heat treated condition
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 23)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Michael Rhode ◽  
Tim Richter ◽  
Tobias Mente ◽  
Peter Mayr ◽  
Alexander Nitsche

Abstract Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 867
Author(s):  
Yujin Yang

Haynes 282 has attracted attention for casting applications in AUSC power plants due to its good creep properties. However, the market is primarily comprised of wrought Haynes 282, while the cast version is not commercially available. In this study, the microstructure of a large traditional sand cast Haynes 282 was studied from as-cast condition to long-term heat-treated condition by combining experimental data and thermodynamic calculations. The microstructure of a large cast Haynes 282 includes γ, γ’, two types of MX, M23C6 and µ phases. After standard post heat treatment, µ phases were dissolved and precipitated as M6C. The equilibrium state was achieved after 266 h aging at 788 °C, after which γ’ particles began coarsening. These kept to a spherical morphology; the smallest misfit was found with the γ matrix. Once post heat treatment was finished, MX exhibited little morphology and compositional change during the long-term isothermal aging. Grain boundary is covered by discrete M23C6 and M6C precipitates and this morphology keeps stable during isothermal aging. No presence of the needle µ phase have been found at grain boundaries after 10,000 h aging at 788 °C. All these microstructural features indicated that cast Haynes 282 could have a high thermal stability and good creep properties.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1156
Author(s):  
Wen Yu ◽  
Jianxin Zhou ◽  
Yajun Yin ◽  
Xin Feng ◽  
Hai Nan ◽  
...  

Hot isostatic pressing (HIP) and subsequent heat-treatments (HT) are necessary for titanium aluminide (TiAl) casting components. But there are few studies carefully comparing the microstructure changes from the initial as-cast condition to the final heat-treated condition. In this study, the microstructures of Ti-47Al-2Cr-2Nb (at%) alloy in the as-cast, as-HIPed and as-heat-treated conditions were characterized by optical microscopy and scanning electron microscopy. The mechanical properties after HTs were determined by the tensile tests at 700 °C. The results show that after HIP and HTs, all the microstructures exhibit a nearly lamellar (NL) structure and can be divided into an edge region and a central area. The microstructure after HIP in the edge region is normal, while distorted lamellae and many fine recrystallized grains exist in the central area. The yield strengths after three HTs are nearly the same, but the elongation after the HT at 1310 °C is much more than that after HTs at 1185 °C and 1280 °C. A refinement of colony size induced by distorted lamellae in as-HIPed condition is considered responsible for the great improvement in elongation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
L. Ponraj Sankar ◽  
G. Aruna ◽  
T. Sathish ◽  
A. Parthiban ◽  
V. Vijayan ◽  
...  

Aluminium alloy is the most favourable material based on the various properties and economic factors. Always there are so many researches going on based on the enhancement of the material properties with various combinations and the various materials mixing rate depending upon the availability. These researches were focused on the augmentations of the properties, and then the corresponding properties can be used in the various applications depending upon the results. In this study, the AA6066 aluminium alloy composites were created with the magnesium oxide and coal ash with a variety of grouping. The specimens were named as AAMgOCA 1 to AAMgOCA 6 with respect to the volume concentration composition. Then, the composites were tested to identify the impact on various strengths such as yield strength, ultimate tensile strength, shear strength, and flexural strength. These strengths were compared with the two conditions of the composites such as annealed and heat-treated conditions. AAMgOCA 3 has the greatest results in heat-treated condition when compared with the annealed condition.


Alloy Digest ◽  
2021 ◽  
Vol 70 (7) ◽  

Abstract CarTech Ti 15V-3Cr-3Sn-3Al (UNS R58153) is a metastable beta titanium alloy that offers substantial weight reduction in comparison with other engineering materials. If used in the solution heat treated condition, the alloy has excellent cold formability. In the aged condition, the alloy has high strength. It is acceptable for use up to 230 °C (550 °F). This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ti-180. Producer or source: Carpenter Technology Corporation.


Alloy Digest ◽  
2021 ◽  
Vol 70 (6) ◽  

Abstract Uddeholm UHB 11 is a medium-carbon, non-alloy cold-work tool steel. It is primarily used in the non-heat-treated condition. For special applications it is used in the quenched and tempered condition. Owing to its low hardenability, Uddeholm UHB 11 develops a fully hardened zone that is relatively thin, even when quenched drastically. Thicker sections have a hard case over a tough core. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, and joining. Filing Code: TS-814. Producer or source: Uddeholms AB.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 683
Author(s):  
Felix Sajadi ◽  
Jan-Marc Tiemann ◽  
Nooshin Bandari ◽  
Ali Cheloee Darabi ◽  
Javad Mola ◽  
...  

This study aimed to identify an optimal heat-treatment parameter set for an additively manufactured AlSi10Mg alloy in terms of increasing the hardness and eliminating the anisotropic microstructural characteristics of the alloy in as-built condition. Furthermore, the influence of these optimized parameters on the fatigue properties of the alloy was investigated. In this respect, microstructural characteristics of an AlSi10Mg alloy manufactured by laser-based powder bed fusion in non-heat-treated and heat-treated conditions were investigated. Their static and dynamic mechanical properties were evaluated, and fatigue behavior was explained by a detailed examination of fracture surfaces. The majority of the microstructure in the non-heat-treated condition was composed of columnar grains oriented parallel to the build direction. Further analysis revealed a high fraction of pro-eutectic α-Al. Through heat treatment, the alloy was successfully brought to its peak-hardened condition, while eliminating the anisotropic microstructural features. Yield strength and ductility increased simultaneously after heat treatment, which is due to the relief of residual stresses, preservation of refined grains, and introduction of precipitation strengthening. The fatigue strength, calculated at 107 cycles, improved as well after heat treatment, and finally, detailed fractography revealed that a more ductile fracture mechanism occurred in the heat-treated condition compared to the non-heat-treated condition.


Author(s):  
Felix Sajadi ◽  
Jan-Marc Tiemann ◽  
Nooshin Bandari ◽  
Ali Cheloee Darabi ◽  
Javad Mola ◽  
...  

This study aims to identify an optimal heat-treatment parameter set for an additively manufactured AlSi10Mg alloy in terms of increasing the hardness and eliminating the anisotropic microstructural characteristics of the alloy in as-built condition. Furthermore, the influence of these optimized parameters on the fatigue properties of the alloy investigated. In this respect, microstructural characteristics of an AlSi10Mg alloy manufactured by Laser-Based Powder Bed Fusion in non-heat-treated and heat-treated conditions were investigated. Their static and dynamic mechanical properties were evaluated, and fatigue behavior was explained by a detailed examination of fracture surfaces. Much of the microstructure in the non-heat-treated condition was composed of columnar grains oriented parallel to the build direction. Further analysis revealed a high fraction of pro-eutectic α-Al. Through heat-treatment, the alloy was successfully brought to its peak-hardened condition, while eliminating the anisotropic microstructural features. Yield strength and ductility increased simultaneously after heat-treatment, which is due to the relief of residual stresses, preservation of refined grains, and introduction of precipitation strengthening. The fatigue strength, calculated at 10^7 cycles, improved as well after heat-treatment and finally detailed fractography reviled that a more ductile fracture mechanism has happened in the heat-treated condition compared to the non-heat-treated condition.


2021 ◽  
Vol 1016 ◽  
pp. 957-963
Author(s):  
Marie Moses ◽  
Madlen Ullmann ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

Since 2018, the institute of metal forming has been studying the novel twin-roll casting (TRC) of magnesium wire at the pilot research plant set up specifically for this purpose. Light microscopic and scanning electronic investigations were carried out within this work and show the unique microstructure of twin-roll cast AZ31 magnesium alloy with grain sizes of about 10 μm ± 4 μm in centre and 39 μm ± 26 μm near the surface of the sample. By means of a short heat treatment (460 °C/15 min), segregations can be dissolved and grain size changes in centre to 19 μm ± 12 μm (increase) and near the surface to 12 μm ± 7 μm (decrease). Further, the mechanical properties of the twin-roll cast and heat-treated wire were analysed by tensile testing at room temperature. By heat treatment, the total elongation could be increased by a third whereas the strength decreases slightly. In heat-treated state, no preferred orientation is evident. In addition to the twin-roll cast and the heat-treated condition, the rolled state was analysed. For this purpose, the twin-roll cast wire was hot rolled using an oval-square calibration. After hot rolling, a dynamic recrystallization and grain refinement of the twin-roll cast wire could be achieved. It can be seen, that an increase in strength as well as in total elongation occur after wire rolling. Beside this, a rolling texture is evident.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244463
Author(s):  
Lisa Wiesent ◽  
Ulrich Schultheiß ◽  
Philipp Lulla ◽  
Ulf Noster ◽  
Thomas Schratzenstaller ◽  
...  

Advances in additive manufacturing enable the production of tailored lattice structures and thus, in principle, coronary stents. This study investigates the effects of process-related irregularities, heat and surface treatment on the morphology, mechanical response, and expansion behavior of 316L stainless steel stents produced by laser powder bed fusion and provides a methodological approach for their numerical evaluation. A combined experimental and computational framework is used, based on both actual and computationally reconstructed laser powder bed fused stents. Process-related morphological deviations between the as-designed and actual laser powder bed fused stents were observed, resulting in a diameter increase by a factor of 2-2.6 for the stents without surface treatment and 1.3-2 for the electropolished stent compared to the as-designed stent. Thus, due to the increased geometrically induced stiffness, the laser powder bed fused stents in the as-built (7.11 ± 0.63 N) or the heat treated condition (5.87 ± 0.49 N) showed increased radial forces when compressed between two plates. After electropolishing, the heat treated stents exhibited radial forces (2.38 ± 0.23 N) comparable to conventional metallic stents. The laser powder bed fused stents were further affected by the size effect, resulting in a reduced yield strength by 41% in the as-built and by 59% in the heat treated condition compared to the bulk material obtained from tensile tests. The presented numerical approach was successful in predicting the macroscopic mechanical response of the stents under compression. During deformation, increased stiffness and local stress concentration were observed within the laser powder bed fused stents. Subsequent numerical expansion analysis of the derived stent models within a previously verified numerical model of stent expansion showed that electropolished and heat treated laser powder bed fused stents can exhibit comparable expansion behavior to conventional stents. The findings from this work motivate future experimental/numerical studies to quantify threshold values of critical geometric irregularities, which could be used to establish design guidelines for laser powder bed fused stents/lattice structures.


Sign in / Sign up

Export Citation Format

Share Document