Three-dimensional bi-conductive Si-based anode for high-performance lithium ion battery

2021 ◽  
Author(s):  
Yangqiang Jiang ◽  
Feng Xiang ◽  
Shijun Fan ◽  
Zixu Sun

A high-coulombic-efficiency Si-based anode material with Si-Cu-C dispersed in a reduced graphene oxide (RGO) and carbon nanotube (CNT) framework (namely SCC/RGO/CNT) is designed and synthesized. The composite could show a...

Nanoscale ◽  
2014 ◽  
Vol 6 (6) ◽  
pp. 3353 ◽  
Author(s):  
Jian-Guo Ren ◽  
Chundong Wang ◽  
Qi-Hui Wu ◽  
Xiang Liu ◽  
Yang Yang ◽  
...  

2020 ◽  
Vol 49 (18) ◽  
pp. 5890-5897 ◽  
Author(s):  
Azam Abbasnezhad ◽  
Hamed Asgharzadeh ◽  
Ali Ansari Hamedani ◽  
Serap Hayat Soytas

In this study, a ternary tin chalcogenide (TC)–reduced graphene oxide (RGO)–carbon nanotube (CNT) nanocomposite was synthesized as a lithium-ion battery (LIB) anode by a simple one-step protocol.


NANO ◽  
2015 ◽  
Vol 10 (04) ◽  
pp. 1550054
Author(s):  
Haibo Li ◽  
Rui Niu ◽  
Sen Liang ◽  
Yulong Ma ◽  
Min Luo ◽  
...  

In this work, the sulfonated reduced graphene oxide (SRGO) was synthesized and proposed as an enhanced anode material for lithium ion battery (LIB). The result shows that the SRGO has an improved battery performance (i.e., ∼341.7 mAh/g and ∼190.6 mAh/g corresponds to SRGO and RGO at the 100th cycle with a current density of 200 mA/g) and superior cycling stability compared with pristine reduced graphene oxide (RGO). These are attributed to the improved specific surface area (448.35 m2/g) and conductivity (2.5 × 10-4 S/m). Further, the SRGO exhibits good rate capability and excellent energy density at various current densities ranging from 50 mAh/g to 2000 mAh/g, suggesting that SRGO could be a promising anode material for high capacity LIB.


2018 ◽  
Vol 3 (43) ◽  
pp. 12108-12112 ◽  
Author(s):  
Xiaoqing Liu ◽  
Dan Zhang ◽  
Guangshe Li ◽  
Chenglin Xue ◽  
Junfang Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document