scholarly journals Application of double-pulse laser-induced breakdown spectroscopy (DP-LIBS), Fourier transform infrared micro-spectroscopy and Raman microscopy for the characterization of copper-sulfides

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 631-639
Author(s):  
Constantinos Varotsis ◽  
Charalampos Tselios ◽  
Konstantinos A. Yiannakkos ◽  
Charalampos Andreou ◽  
Marios Papageorgiou ◽  
...  

Raman and FTIR microspectroscopies, laser induced breakdown spectroscopy (LIBS) and DP-LIBS have been applied towards our understanding of the characterization of the structure and structure–function relationship in copper-sulfide minerals.

2020 ◽  
Vol 1 (2) ◽  
pp. 5-8
Author(s):  
Komang Gde Suastika, Heri Suyanto, Gunarjo, Sadiana, Darmaji

Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones


2021 ◽  
Vol 49 (3) ◽  
pp. 1166-1172
Author(s):  
Xinran Qin ◽  
Fuzeng Zhang ◽  
Shaojie Chen ◽  
Tingting Wang ◽  
Xiao Hong ◽  
...  

2018 ◽  
Vol 27 (8) ◽  
pp. 087401 ◽  
Author(s):  
T Iqbal ◽  
M Abrar ◽  
M B Tahir ◽  
M Seemab ◽  
A Majid ◽  
...  

2011 ◽  
Vol 324 ◽  
pp. 324-327 ◽  
Author(s):  
Sarah Darwiche ◽  
Malek Benmansour ◽  
Nir Eliezer ◽  
Daniel Morvan

Laser-induced breakdown spectroscopy (LIBS) has been employed for the fast and reliable chemical characterization of silicon used for the photovoltaic industry. Silicon for photovoltaic panels is subject to certain constraints on its purity, and notably must contain low concentration of boron. The use of LIBS could be advantageous because it allows rapid and simultaneous multi-elemental chemical analysis of silicon without any sample preparation. LIBS was applied to boron analysis and a detection limit of 0.23 ppmw was found for optimized gas and pressure conditions.


2016 ◽  
Vol 124 ◽  
pp. 47-55 ◽  
Author(s):  
V.N. Lednev ◽  
S.M. Pershin ◽  
A.F. Bunkin ◽  
A.A. Samokhvalov ◽  
V.P. Veiko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document