scholarly journals AlCl3-Graphite Intercalation Compounds as Negative Electrode Materials in Lithium-ion Capacitors

Author(s):  
Yamato Haniu ◽  
Hiroki Nara ◽  
Seongki Ahn ◽  
Toshiyuki Momma ◽  
Wataru Sugimoto ◽  
...  

Lithium-ion capacitors (LICs) are energy storage devices that bridge the gap between electric double-layer capacitors and lithium-ion batteries (LIBs). A typical LIC cell is composed of a capacitor-type positive electrode...

Author(s):  
Juan Yu ◽  
Xuyang Wang ◽  
Jiaxin Peng ◽  
Xuefeng Jia ◽  
Linbo Li ◽  
...  

Abstract Biomass-activated carbon materials are promising electrode materials for lithium-ion hybrid capacitors (LiCs) because of their natural hierarchical pore structure. The efficient utilization of structural pores in activated carbon is very important for their electrochemical performance. Herein, porous biomass-activated carbon (PAC) with large specific surface area was prepared using a one-step activation method with biomass waste as the carbon source and ZnCl2 as the activator. To further improve its pore structure utilization efficiency, the PAC was doped with nitrogen using urea as the nitrogen source. The experimental results confirmed that PAC-1 with a high nitrogen doping level of 4.66% exhibited the most efficient pore utilization among all the samples investigated in this study. PAC-1 exhibited 92% capacity retention after 8000 cycles, showing good cycling stability. Then, to maximize the utilization of high-efficiency energy storage devices, LiNi0.8Co0.15Al0.05O2 (NCA), a promising cathode material for lithium-ion batteries with high specific capacity, was compounded with PAC-1 in different ratios to obtain NCA@PC composites. The NCA@PC-9 composite exhibited excellent capacitance in LiCs and an energy density of 210.9 Wh kg-1 at a high power density of 13.3 kW kg-1. These results provide guidelines for the design of high-performance and low-cost energy storage devices.


Author(s):  
Tariq Bashir ◽  
Sara Adeeba Ismail ◽  
Yuheng Song ◽  
Rana Muhammad Irfan ◽  
Shiqi Yang ◽  
...  

Energy storage devices such as batteries hold great importance for society, owing to their high energy density, environmental benignity and low cost. However, critical issues related to their performance and safety still need to be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable energy storage devices.


2016 ◽  
Vol 1 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Hao Bin Wu ◽  
Genqiang Zhang ◽  
Le Yu ◽  
Xiong Wen (David) Lou

One-dimensional (1D) metal oxide–carbon hybrid nanostructures have recently attracted enormous interest as promising electrode materials for electrochemical energy storage devices, including lithium-ion batteries and electrochemical capacitors.


2020 ◽  
Vol 8 (9) ◽  
pp. 4950-4959 ◽  
Author(s):  
M. L. Divya ◽  
Subramanian Natarajan ◽  
Yun-Sung Lee ◽  
Vanchiappan Aravindan

Graphite is the dominant choice as negative electrode since the commercialization of lithium-ion batteries, which could bring about a significant increase in demand for the material owing to its usage in forthcoming graphite-based energy storage devices.


2020 ◽  
Vol 8 (24) ◽  
pp. 11906-11922 ◽  
Author(s):  
Hao Wang ◽  
Chang-Jiang Yao ◽  
Hai-Jing Nie ◽  
Ke-Zhi Wang ◽  
Yu-Wu Zhong ◽  
...  

Lithium-ion batteries (LIBs) have been demonstrated as one of the most promising energy storage devices for applications in electric vehicles, smart grids, large-scale energy storage systems, and portable electronics.


2017 ◽  
Vol 5 (6) ◽  
pp. 2411-2428 ◽  
Author(s):  
Jie Wang ◽  
Ping Nie ◽  
Bing Ding ◽  
Shengyang Dong ◽  
Xiaodong Hao ◽  
...  

Biomass-derived carbon materials have received extensive attention as electrode materials for energy storage devices, including electrochemical capacitors, lithium–sulfur batteries, lithium-ion batteries, and sodium-ion batteries.


2016 ◽  
Vol 1 (6) ◽  
pp. 496-501 ◽  
Author(s):  
Dai-Huo Liu ◽  
Hong-Yan Lü ◽  
Xing-Long Wu ◽  
Jie Wang ◽  
Xin Yan ◽  
...  

In this communication, in order to develop superior electrode materials for advanced energy storage devices, a new strategy is proposed and then verified by the (Si@MnO)@C/RGO anode material for lithium ion batteries.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


Electrochem ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 236-250
Author(s):  
Arjun Prasad Tiwari ◽  
Tanka Mukhiya ◽  
Alagan Muthurasu ◽  
Kisan Chhetri ◽  
Minju Lee ◽  
...  

The development of smart negative electrode materials with high capacitance for the uses in supercapacitors remains challenging. Although several types of electrode materials with high capacitance in energy storage have been reported, carbon-based materials are the most reliable electrodes due to their high conductivity, high power density, and excellent stability. The most common complaint about general carbon materials is that these electrode materials can hardly ever be used as free-standing electrodes. Free-standing carbon-based electrodes are in high demand and are a passionate topic of energy storage research. Electrospun nanofibers are a potential candidate to fill this gap. However, the as-spun carbon nanofibers (ECNFs) have low capacitance and low energy density on their own. To overcome the limitations of pure CNFs, increasing surface area, heteroatom doping and metal doping have been chosen. In this review, we introduce the negative electrode materials that have been developed so far. Moreover, this review focuses on the advances of electrospun nanofiber-based negative electrode materials and their limitations. We put forth a future perspective on how these limitations can be overcome to meet the demands of next-generation smart devices.


Sign in / Sign up

Export Citation Format

Share Document