Bioadhesive glycosylated Nanoformulations for Extended Trans-Cornea Drug Delivery to Suppress Corneal Neovascularization

Author(s):  
Yanlong Zhang ◽  
Yunjian Yu ◽  
Gang Li ◽  
Xinge Zhang ◽  
Zhongming Wu ◽  
...  

Eye-drop formulations as conventional regiments to tackle ocular diseases are far from efficient due to the rapid clearance by eye tears and blockage of corneal epithelium barrier. Here, we describe...

2021 ◽  
pp. 153537022110107
Author(s):  
Noah Trac ◽  
Eun Ji Chung

The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.


RSC Advances ◽  
2020 ◽  
Vol 10 (46) ◽  
pp. 27835-27855 ◽  
Author(s):  
Srividya Gorantla ◽  
Vamshi Krishna Rapalli ◽  
Tejashree Waghule ◽  
Prem Prakash Singh ◽  
Sunil Kumar Dubey ◽  
...  

Ocular diseases have a significant effect on vision and quality of life.


2009 ◽  
Vol 50 (7) ◽  
pp. 3337 ◽  
Author(s):  
Jesica Martin ◽  
Pradeep Malreddy ◽  
Takeo Iwamoto ◽  
Lisa C. Freeman ◽  
Harriet J. Davidson ◽  
...  

2009 ◽  
Vol 11 (5) ◽  
pp. 959-970 ◽  
Author(s):  
Ronalee Lo ◽  
Po-Ying Li ◽  
Saloomeh Saati ◽  
Rajat N. Agrawal ◽  
Mark S. Humayun ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Xinyi Wang ◽  
Haiyang Zhang ◽  
Haiou Yang ◽  
Ming Bai ◽  
Tao Ning ◽  
...  

Exosomes are small vesicles that are secreted by various types of cells, known to mediate signal transduction between cells. During recent years, novel carriers for the delivery of targeted drugs, chemotherapy drugs and RNAs are under development, which is believed to be beneficial for patients. Considering issues of drug nano-formulations in bloodstream, such as nano-toxicity and rapid clearance by mononuclear phagocyte system, exosomes derived from either patient’s cells or bodyfluids, seem to be an optimal option. This review presents the current patterns of drug-loaded into exosomes and discusses how exosomes were reconstructed for targeted therapy. Loading either exosomes directly or their donor cells is an alternative, including incubation, electroporation, transfection of exosomes or transfection, incubation, activation of the parent cells. To solve the low efficiency of cargo loading into exosomes, protein loading via optically reversible protein-protein interaction can realize a novel exosomal protein carrier. In addition, targeted therapeutics with exosomes is achieved by three means, via adding targeting peptides into the surface of exosomes, by transferring specific genes within exosomes into tumors to establish a therapeutic target and, lastly, by targeting at exosomes containing tumor associated antigens. Nevertheless, purification and mass production of exosomes need further exploration, as well as more approaches were applied to targeted therapy. Therefore, exosomes could serve as an effective tool for drug delivery and targeted therapy.


2017 ◽  
Vol 23 (3) ◽  
pp. 440-453 ◽  
Author(s):  
Shadab Md. ◽  
Shadabul Haque ◽  
Ravi Sheshala ◽  
Lim Wei Meng ◽  
Venkata Srikanth Meka ◽  
...  

Background: The drug delivery of macromolecules such as proteins and peptides has become an important area of research and represents the fastest expanding share of the market for human medicines. The most common method for delivering macromolecules is parenterally. However parenteral administration of some therapeutic macromolecules has not been effective because of their rapid clearance from the body. As a result, most macromolecules are only therapeutically useful after multiple injections, which causes poor compliance and systemic side effects. Methods: Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects. Result: Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles. Conclusion: This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations.


Oncology ◽  
2017 ◽  
pp. 366-381
Author(s):  
Anjali Hirani ◽  
Aditya Grover ◽  
Yong Woo Lee ◽  
Yashwant Pathak ◽  
Vijaykumar Sutariya

Millions of people suffer from ocular diseases that impair vision and can lead to blindness. Advances in genomics and proteomics have revealed a number of different molecular markers specific for different ocular diseases, thereby optimizing the processes of drug development and discovery. Nanotechnology can increase the throughput of data obtained in omics-based studies and allows for more sensitive diagnostic techniques as more efficient drug delivery systems. Biocompatible and biodegradable nanomaterials developed through omics-based research are able to target reported molecular markers for different ocular diseases and offer novel alternatives to conventional drug therapy. In this chapter, the authors review the pathophysiology, current genomic and proteomic information, and current nanomaterial-based therapies of four ocular diseases: glaucoma, uveal melanoma, age-related macular degeneration, and diabetic retinopathy. Omics-based research can be used to elucidate specific genes and proteins and develop novel nanomedicine formulations to prevent, halt, or cure ocular diseases at the transcriptional or translational level.


2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Jonathan Marsh ◽  
Ramana M. Pidaparti

This paper presents an implantable device concept with applications for treating ocular diseases such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa. The design of a biodegradable drug delivery device concept consisting of a polydimethylsiloxane (PDMS) shell with a fluid reservoir and micro/nanofluidic tubes that allow the drug to be stored and delivered at a specified rate is discussed. Computational fluid dynamics simulations were conducted through various tube configurations in order to obtain the drug diffusion characteristics. The results from the simulation studies revealed information related to drug transport under varying design parameters. The design simulations were conducted with a desired rate. Based on results from several simulations, an optimization study was conducted to achieve the required dosage for about 2 years. The results obtained from the optimization study shows that the device concept can be extended for different drugs to treat ocular diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jae-Hwan Lee ◽  
Ramana M. Pidaparti ◽  
Gary M. Atkinson ◽  
Ramana S. Moorthy

Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS) which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics.


Sign in / Sign up

Export Citation Format

Share Document