Studies in ion solvation in non-aqueous solvents and their aqueous mixtures. Part IX. The methanol–water system: further discussion of the ‘acid–base’ theory of ionic solvation; the ‘non-electrolytic’ effect

1968 ◽  
Vol 0 (0) ◽  
pp. 1486-1493 ◽  
Author(s):  
A. L. Andrews ◽  
H. P. Bennetto ◽  
D. Feakins ◽  
K. G. Lawrence ◽  
R. P. T. Tomkins
1984 ◽  
Vol 49 (10) ◽  
pp. 2355-2362 ◽  
Author(s):  
Juraj Leško ◽  
Marie Dorušková ◽  
Jan Tržil

Boron oxide in the Na2O.P2O5-x B2O3 system behaves as a Lux base. Its addition to Na2O.P2O5 brings about transformation of a Co(II) indicator from octahedral to tetrahedral configuration, increase in the optical basicity ΛPb(II), increase in the relative basicity of the melt as determined by means of a galvanic cell, and depolymerization reactions releasing PO43- ions. In the Na2O-B2O3 system free of P2O5, boron oxide behaves as a Lux acid. The amphoretic nature of B2O3 is explained in terms of Lux's acid-base theory extended in analogy with the protolysis theory. The theoretical optical basicity values do not indicate the amphoretic behaviour of B2O3 because in this approach boron oxide is a priori regarded as more acidic than Na2O.P2O5.


Sign in / Sign up

Export Citation Format

Share Document