boron oxide
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 64)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 24 (S1) ◽  
pp. 1-17
Author(s):  
Celia Dolores Pedroza-Solis ◽  
Javier Rivera De la Rosa ◽  
Carlos J. Lucio-Ortiz ◽  
David A. De Haro Del Río ◽  
Diego A. González-Casamachin ◽  
...  
Keyword(s):  

2021 ◽  
pp. 089270572110523
Author(s):  
Yasin Demirhan ◽  
Recep Yurtseven ◽  
Nazım Usta

In this study, different amounts of boric acid (BA, 1.25, 2.5, 3.75 and 5.0 wt%) were used to enhance the effectiveness of an intumescent flame retardant (IFR) system composed of ammonium polyphosphate (APP) and pentaerythritol (PER) in polypropylene (PP) including 2 wt% montmorillonite nanoclay (MMT). Meanwhile, metaboric acid and boron oxide which were generated by the decomposition of BA appeared in the melt compounding and the burning processes, respectively. Extensive experimental studies were performed to investigate the effects of BA/boron oxide and MMT combinations on the properties of PP/IFR. The fire resistances of the composites were studied by UL 94, limiting oxygen index (LOI) and cone calorimetry tests. The thermal properties were determined by using thermogravimetric analysis, differential scanning calorimetry and thermal conductivity measurements. In addition, the mechanical properties of the composites were examined. The experimental results revealed that although the additions of 1.25 and 2.5 wt% BA with 2 wt% MMT significantly enhanced thermal and flame resistances of PP composites, 3.75 and 5.0 wt% BA additions generated antagonistic effects and deteriorated the fire resistance of the composites. The sample including 2.5 wt% BA addition achieved the best flame retardancy. The LOI value was increased from 18 to 31% with UL 94 V-0 rating. In addition, the peak heat release rate was reduced from 668.6 to 150.0 kW/m2 and the total heat release value was decreased from 247.9 to 98.4 MJ/m2. In the meantime, the thermal conductivity was increased from 0.22 up to 0.28 W/mK. Furthermore, CO, CO2 and the smoke productions were significantly decreased with respect to PP. NO generation was decreased with BA replacements. At the same time, although there was a slight decrease in the tensile strength, the flexural strength significantly increased with BA and MMT additions.


Small Methods ◽  
2021 ◽  
pp. 2100679
Author(s):  
Yunqing Kang ◽  
Bo Jiang ◽  
Victor Malgras ◽  
Yanna Guo ◽  
Ovidiu Cretu ◽  
...  

2021 ◽  
Vol 64 (7) ◽  
pp. 471-476
Author(s):  
V. I. Zhuchkov ◽  
O. V. Zayakin ◽  
A. A. Akberdin

On the basis of literature and our own data, the effect of boron on characteristics of all stages of metallurgical processes (from sintering, smelting of cast iron and ferroalloys, to steel production) and on the properties of the resulting slag and metal was studied. To intensify the pellets hardening at the stage of liquid-phase sintering and to improve their metallurgical properties, it is sufficient to have 0.20 – 0.35 % of boron oxide in them. According to the laboratory studies, the presence of boron oxide in pellets increases their compressive strength by 1.5 – 1.7 times and hot strength by 3 – 4 times. While studying the mechanism and kinetics of sulfur removal, it was shown that the presence of boric anhydride significantly intensifies processes of pellets desulfurization. Their intensive progress goes to the zones of lower temperatures of 1050 – 1100 °С. To increase the sinter strength characteristics, it is possible to add B2O3 to the charge. The introduction of 0.44 % of B2O3 does not affect the sinter abrasion. The content of fines (0 – 5 mm) in comparison with the base sample is reduced by 1.5 times. The use of boron pellets in blast-furnace smelting makes it possible to increase the basicity of the final slag from 1.10 to 1.16. In this regard, the sulfur distribution coefficient increases from 48 to 74. The sulfur content in cast iron decreases by 0.005 %. The possibility of using boron and its compounds to improve the technical and economic indicators of production and the quality of pellets, sinter and cast iron is shown on the base of the presented theoretical, laboratory-experimental and industrial data.


2021 ◽  
Vol 410 ◽  
pp. 293-298
Author(s):  
Anatolij A. Babenko ◽  
Ruslan R. Shartdinov ◽  
Alena G. Upolovnikova

The use of fluorspar in modern metallurgical slags, incl. slags of the argon-oxygen decarburization (AOD) process, as a fluxing agent, is associated with many disadvantages. Those disadvantages can be solved by using boron oxide as an alternative, which also provides conditions for direct microalloying of steel with boron. The paper presents the results of thermodynamic modeling of the effect of basicity and boron oxide content in slags of the CaO–SiO2–B2O3–Cr2O3–Al2O3–MgO system on the equilibrium interphase distribution of sulfur and boron, and their equilibrium content in the metal. Modeling was carried out using the HSC 8.03 Chemistry software package (Outokumpu). Slag from the desulfurization period of the AOD-process was used as the oxide phase. As a result, it was shown that, in the range of basicities 2.0-2.5 and a content of 2-4% B2O3, it is possible to carry out desulfurization of the metal, providing a sulfur content of 0.001-0.007%, and simultaneous microalloying of steel with boron in an amount of up to 0.0103%.


Sign in / Sign up

Export Citation Format

Share Document