optical basicity
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 22)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  
Author(s):  
A. Amat ◽  
M. K. Halimah ◽  
M. Ishak ◽  
S. N. Nazrin ◽  
N. N. Syamimi ◽  
...  

Abstract [(TeO2)0.7(B2O3)0.3]1-x (BaO)x, x = 0.00, 0.05, 0.10, 0.20, 0.25, 0.30 and 0.35 mol fraction glass series were successfully synthesized by conventional melt quenching method. Amorphous phase of all samples was confirmed through X-ray diffraction while optical properties were determined using UV-VIS spectrophotometer. Fourier Transform Infrared (FTIR) analysis showed that the glass structure consisted of TeO3, TeO4, TeO6, BO3 and BO4 structural units. The optical band gap energy, Eopt which was calculated from Tauc’ plots decreased as the amount of BaO increases, whereas, the Urbach energy value increased. The increase in Urbach energy value was attributed to the increase of defects in glass structure. The refractive indices of glass were found to increase along with the increased amount of BaO, due to the high polarization and high density of host material and glass modifier. The molar polarizability, αm, oxide ion polarizability, αo2- and optical basicity, Λ of the glasses are calculated by Lorentz-Lorenz equation. The glasses were found to possess αm values between 8.106 – 8.489 Å3, and αo2- values between 3.303 to 4.772. Meanwhile, optical basicity increases from 0.115 to 0.893.


2021 ◽  
Vol 64 (2) ◽  
pp. 104-111
Author(s):  
A. A. Metelkin ◽  
O. Yu. Sheshukov ◽  
M. V. Savel’ev ◽  
O. I. Shevchenko ◽  
D. K. Egiazar’yan

The article considers the issues of sulfur removal in the ladle-furnace unit. The sulfur distribution coefficient depends on sulfide capacity of the slag, sulfur activity coefficient, oxidizing potential of the medium and equilibrium constant. The sulfide capacity CS of slags is one of the most important characteristics of refining capacity of the slags used in extra-furnace steel processing. One of the factors affecting the sulfide capacity is temperature. The formula was proposed showing the dependence of sulfide capacity on the optical basicity and temperature, in the temperature range of 1650 – 1400 °C and when the optical basicity Λ is not more than 0.75; the error of the presented formula does not exceed 6 %. The formula for calculating the optical basicity is proposed, which takes into account the influence of basic, acidic oxides and amphoteric oxide Al2O3. It is shown that slags, completely consisting of a homogeneous phase, have an increased optical basicity of aluminum oxide. Heterogeneous slags have a reduced optical basicity of Al2O3 in comparison with homogeneous slags. Perhaps, this fact can be explained by the fact that in homogeneous slags there is a deficiency of the basic oxide CaO and in the conditions under consideration Al2O3 compound begins to exhibit more basic properties than acidic ones, thus, in homogeneous slags, the optical basicity of aluminum oxide is increased and approaches optical basicity of CaO oxide. Calculations carried out on the basis of real heats have shown that with an increase in the content of Al2O3 oxide in the slag, its optical basicity decreases. Known value of the optical basicity makes it possible to determine sulfide capacity of the slag, sulfur distribution coefficient between metal and slag, and, accordingly, final sulfur content in the metal. The research results have shown that it is advisable to apply the ionic theory of slags for the sulfide capacity determination.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244621
Author(s):  
Harisankar Sreenivasan ◽  
Wei Cao ◽  
Yongfeng Hu ◽  
Qunfeng Xiao ◽  
Mohsen Shakouri ◽  
...  

Alkali-activated materials (AAMs), sometimes called geopolymers, are eco-friendly cementitious materials with reduced carbon emissions when compared to ordinary Portland cement. However, the availability of most precursors used for AAM production may decline in the future because of changes in industrial sectors. Thus, new precursors must be developed. Recently there has been increased interest in synthetic glass precursors. One major concern with using synthetic glasses is ensuring that they react sufficiently under alkaline conditions. Reactivity is a necessary, although not sufficient, requirement for a suitable precursor for AAMs. This work involves the synthesis, characterization, and estimation of alkaline reactivity of Na-Mg aluminosilicate glasses. Structural characterization showed that replacing Na with Mg led to more depolymerization. Alkaline reactivity studies indicated that, as Mg replaced Na, reactivity of glasses increased at first, reached an optimal value, and then declined. This trend in reactivity could not be explained by the conventional parameters used for estimating glass reactivity: the non-bridging oxygen fraction (which predicts similar reactivity for all glasses) and optical basicity (which predicts a decrease in reactivity with an increase in Mg replacement). The reactivity of the studied glasses was found to depend on two main factors: depolymerization (as indicated by structural characterization) and optical basicity. Depolymerization dominated initially, which led to an increase in reactivity, while the effect of optical basicity dominated later, leading to a decrease in reactivity. Hence, while designing reactive synthetic glasses for alkali activation, structural study of glasses should be given due consideration in addition to the conventional factors.


Sign in / Sign up

Export Citation Format

Share Document