Direct determination of the samarium: neodymium ratio in geological materials by inductively coupled plasma quadrupole mass spectrometry with cryogenic desolvation. Comparison with isotope dilution thermal ionization mass spectrometry

1995 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Christian Pin ◽  
Philippe Telouk ◽  
Jean-Louis Imbert
2018 ◽  
Vol 33 (6) ◽  
pp. 1057-1067 ◽  
Author(s):  
Shengling Sun ◽  
Jie Li ◽  
Le Zhang ◽  
Lu Yin ◽  
Jing Zhang

This study reports an improved procedure for the simultaneous determination of Re–Os and S isotopic compositions of sulfur-bearing minerals using negative thermal ionization mass spectrometry (N-TIMS) and multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), respectively.


2009 ◽  
Vol 63 (11) ◽  
pp. 1232-1237 ◽  
Author(s):  
Yali Sun ◽  
Zhuyin Chu ◽  
Min Sun ◽  
Xiaoping Xia

An improved Fe–Ni sulfide fire assay method has been developed for determination of Re, the platinum group elements (PGE), and Os isotopic ratios using inductively coupled plasma–mass spectrometry (ICP-MS) and negative thermal ionization–mass spectrometry (NTI-MS). Recovery of Re using the neoclassical NiS fire assay technique is very low, but recoveries of up to 75% can be achieved by using Fe–Ni sulfide as a collector and Na2B4O7 as a flux. Using isotope dilution for determination of Re, a number of standard reference materials were analyzed for PGE and Re, and the results are consistent with their certified values. Multiple analyses of the reference standard GBW 07290 produced precisions ranging from 2.2% for Os to 5.9% for Ir. The detection limits are 2 pg g−1 for Ru, 1.5 pg g−1 for Rh, 25 pg g−1 for Pd, 23 pg g−1 for Re, 0.7 pg g−1 for Os, 1 pg g−1 for Ir, and 6 pg g−1 for Pt. The low procedural blank of Os (1.3 pg g−1) makes the Fe–Ni sulfide fire assay suitable for analysis of Os isotopic compositions. Using NTI-MS, the 187Os/188Os ratios were measured for WPR-1 and they are consistent with literature values.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1956
Author(s):  
Rajamanickam Murugan ◽  
Tatsuo Aono ◽  
Sarata Kumar Sahoo

Precise tellurium (Te) isotope ratio measurement using mass spectrometry is a challenging task for many decades. In this paper, Te isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC–ICP–MS) in terrestrial Te standards have been reported. Newly developed Faraday cup with 1012 Ω resistor is used to measure low abundance 120Te, whereas the 1011 Ω resistor is used to measure other Te isotopes. The relative standard deviation obtained for Te isotope ratio measurement by Faraday cups of 120Te/128Te [0.002907(05)], 122Te/128Te [0.079646(10)], 123Te/128Te [0.027850(07)], 125Te/128Te [0.221988(09)], 126Te/128Te [0.592202(20)], and 130Te/128Te [1.076277(30)] were 0.140%, 0.014%, 0.026%, 0.005%, 0.004%, and 0.004%, respectively. The measured isotope ratio results are compared with previous results obtained by thermal ionization mass spectrometry (TIMS), negative thermal ionization mass spectrometry (N–TIMS), and MC–ICP–MS, showing an improvement in the precision about one order of magnitude for 120Te/128Te ratio. The present study shows better precision for Te isotope ratios compared to earlier studies.


Sign in / Sign up

Export Citation Format

Share Document