1070. Studies in hydrogen-bond formation. Part X. Complex-formation between a variety of organic solutes in carbon tetrachloride

Author(s):  
C. H. Giles ◽  
R. B. McKay ◽  
W. Good
2000 ◽  
Vol 14 (3) ◽  
pp. 99-107 ◽  
Author(s):  
Gamal A. Gohar ◽  
Moustafa M. Habeeb

The proton transfer equilibrium constants (KPT) for 1 : 1 complex formation between Chloranilic Acid (CA) and a series ofp- andm‒substituted anilines have been measured in 1,4-dioxane spectrophotometrically. The results supported the concept of amine-solvent hydrogen bond formation (short range solvation effect). Beside, this effect, theKPTvalues were apparently affected by the electron donation power of the aniline ring substituent, which was transmitted to the interaction center via resonance and inductive effects. Linear relationships betweenKPTand σ-Hammett substituent constants, or pKvalues formandpanilines,were obtained verifying the above conclusions. The solute-solvent hydrogen bond formation might increase the reactivity of the aniline nitrogen than would the inductive effect of the alkyl group, in case of CA-N-alkyl aniline complexes. The thermodynamic parameters for the proton transfer complex formation were estimated and it was indicated that the solvent–aniline hydrogen bond formation was preferred in the case ofp-substituted aniline complexes more than in the case of the correspondingm‒isomer. It has been found that the proton transfer process was enthalpy and entropy controlled.


2001 ◽  
Vol 215 (7) ◽  
Author(s):  
J. Gangopadhyay ◽  
Sujit Chandra Lahiri

Cyproheptadine, an antihistaminic and antipruritic drug, forms fairly stable charge-transfer complexes with quinone (Q), chloranil (Chl-Q) and anthraquinone (AQ) in chloroform. It also forms stable hydrogen bonds with alcohols (methanol and propanol) and phenols (α-naphthol,The results suggest that cyproheptadine can form loose association with receptors through charge-transfer and hydrogen bond complex formation.


2020 ◽  
Vol 8 (42) ◽  
pp. 14939-14947
Author(s):  
So Yokomori ◽  
Shun Dekura ◽  
Tomoko Fujino ◽  
Mitsuaki Kawamura ◽  
Taisuke Ozaki ◽  
...  

A novel vapochromic mechanism by intermolecular electron transfer coupled with hydrogen-bond formation was realized in a zinc dithiolene complex crystal.


1982 ◽  
Vol 104 (2) ◽  
pp. 619-621 ◽  
Author(s):  
Mario J. Nappa ◽  
Roberto Santi ◽  
Steven P. Diefenbach ◽  
Jack Halpern

2010 ◽  
Vol 88 (8) ◽  
pp. 849-857 ◽  
Author(s):  
Nguyen Tien Trung ◽  
Tran Thanh Hue ◽  
Minh Tho Nguyen

The hydrogen-bonded interactions in the simple (HNZ)2 dimers, with Z = O and S, were investigated using quantum chemical calculations with the second-order Møller–Plesset perturbation (MP2), coupled-cluster with single, double (CCSD), and triple excitations (CCSD(T)) methods in conjunction with the 6-311++G(2d,2p), aug-cc-pVDZ, and aug-cc-pVTZ basis sets. Six-membered cyclic structures were found to be stable complexes for the dimers (HNO)2, (HNS)2, and (HNO–HNS). The pair (HNS)2 has the largest complexation energy (–11 kJ/mol), and (HNO)2 the smallest one (–9 kJ/mol). A bond length contraction and a frequency blue shift of the N–H bond simultaneously occur upon hydrogen bond formation of the N–H···S type, which has rarely been observed before. The stronger the intramolecular hyperconjugation and the lower the polarization of the X–H bond involved as proton donor in the hydrogen bond, the more predominant is the formation of a blue-shifting hydrogen bond.


Science ◽  
1982 ◽  
Vol 215 (4533) ◽  
pp. 695-696 ◽  
Author(s):  
J. P. GLUSKER ◽  
D. E. ZACHARIAS ◽  
D. L. WHALEN ◽  
S. FRIEDMAN ◽  
T. M. POHL

Sign in / Sign up

Export Citation Format

Share Document