Complexes between macrobicyclic polyethers and hydrogen bond donors; the crystal structure of ammonium iodide and 1,5,12,16,23,26,29,32-octaoxa [10][5.5]orthocyclophane

Author(s):  
Judith A. Bandy ◽  
Colin H. L. Kennard ◽  
David G. Parsons ◽  
Mary R. Truter
2014 ◽  
Vol 70 (9) ◽  
pp. o932-o932 ◽  
Author(s):  
Gamal A. El-Hiti ◽  
Keith Smith ◽  
Amany S. Hegazy ◽  
Ali M. Masmali ◽  
Benson M. Kariuki

The title compound, C10H12N2S, does not contain any strong hydrogen-bond donors but two long C—H...N contacts are observed in the crystal structure, with the most linear interaction linking molecules along [010]. The ellipsoids of thetert-butyl group indicate large librational motion.


2006 ◽  
Vol 62 (7) ◽  
pp. o2578-o2579
Author(s):  
Arnaud Bonnet ◽  
William Jones ◽  
W. D. Samuel Motherwell

In the crystal structure of the title compound, C6H12O6, molecules adopt a chair conformation. The H atoms were located and their positions refined satisfactorily. The molecules form one intramolecular and 12 intermolecular hydrogen bonds; all hydroxyl groups act as hydrogen-bond donors and acceptors.


2018 ◽  
Vol 33 (2) ◽  
pp. 166-171
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pemetrexed disodium heptahydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Pemetrexed disodium heptahydrate crystallizes in space group P21 (#4) with a = 11.732 697(27), b = 5.244 195(14), c = 21.689 00(6) Å, β = 92.663 90(20)°, V = 1333.051(6) Å3, and Z = 2. Each of the two ionized carboxylate groups acts as a unidentate ligand to a Na cation. The remaining five positions of the octahedral coordination spheres are occupied by water molecules. The Na octahedra share an edge to form pairs. These pairs share corners to form chains along the b-axis. All of the water molecule hydrogen atoms act as hydrogen bond donors. In addition the hydrogen atoms associated with the nitrogen atoms and amino groups of the pemetrexed anion were also observed to act as hydrogen bond donors. The powder pattern has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File™.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Nicoleta Caimac ◽  
Elena Melnic ◽  
Diana Chisca ◽  
Marina S. Fonari

The title compound crystallises in the triclinic centrosymmetric space group P1̄ with an intriguing high number of crystallographically unique binary salt-like adducts (Z′ = 8) and a total number of ionic species (Z′′ = 16) in the asymmetric unit.


2021 ◽  
pp. 1-8
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tofacitinib dihydrogen citrate (tofacitinib citrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tofacitinib dihydrogen citrate crystallizes in space group P212121 (#19) with a = 5.91113(1), b = 12.93131(3), c = 30.43499(7) Å, V = 2326.411(6) Å3, and Z = 4. The crystal structure consists of corrugated layers perpendicular to the c-axis. Within the layers, cation⋯anion and anion⋯anion hydrogen bonds link the fragments into a two-dimensional network parallel to the ab-plane. Between the layers, there are only van der Waals contacts. A terminal carboxylic acid group in the citrate anion forms a strong charge-assisted hydrogen bond to the ionized central carboxylate group. The other carboxylic acid acts as a donor to the carbonyl group of the cation. The citrate hydroxy group forms an intramolecular charge-assisted hydrogen bond to the ionized central carboxylate. Two protonated nitrogen atoms in the cation act as donors to the ionized central carboxylate of the anion. These hydrogen bonds form a ring with the graph set symbol R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2007 ◽  
Vol 63 (11) ◽  
pp. o4278-o4278
Author(s):  
Alexandra M. Z. Slawin ◽  
William T. A. Harrison

In the title compound, C9H13N2O+·I−, the dihedral angle between the aromatic ring and the N-acetyl group is 73.93 (8)°. In the crystal structure, the cation and anion interact by way of an N—H...I hydrogen bond.


Sign in / Sign up

Export Citation Format

Share Document