librational motion
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 5)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 1 ◽  
Author(s):  
Suman Saha ◽  
Syamal Kumar Dana

We present an exemplary system of three identical oscillators in a ring interacting repulsively to show up chimera patterns. The dynamics of individual oscillators is governed by the superconducting Josephson junction. Surprisingly, the repulsive interactions can only establish a symmetry of complete synchrony in the ring, which is broken with increasing repulsive interactions when the junctions pass through serials of asynchronous states (periodic and chaotic) but finally emerge into chimera states. The chimera pattern first appears in chaotic rotational motion of the three junctions when two junctions evolve coherently, while the third junction is incoherent. For larger repulsive coupling, the junctions evolve into another chimera pattern in a periodic state when two junctions remain coherent in rotational motion and one junction transits to incoherent librational motion. This chimera pattern is sensitive to initial conditions in the sense that the chimera state flips to another pattern when two junctions switch to coherent librational motion and the third junction remains in rotational motion, but incoherent. The chimera patterns are detected by using partial and global error functions of the junctions, while the librational and rotational motions are identified by a libration index. All the collective states, complete synchrony, desynchronization, and two chimera patterns are delineated in a parameter plane of the ring of junctions, where the boundaries of complete synchrony are demarcated by using the master stability function.


2020 ◽  
Author(s):  
Chun-Chieh Yu ◽  
Kuo-Yang Chiang ◽  
Masanari Okuno ◽  
Takakazu Seki ◽  
Tatsuhiko Ohto ◽  
...  

<p>Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopy with<i> ab initio </i>molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode.</p>


2020 ◽  
Author(s):  
Chun-Chieh Yu ◽  
Kuo-Yang Chiang ◽  
Masanari Okuno ◽  
Takakazu Seki ◽  
Tatsuhiko Ohto ◽  
...  

<p>Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopy with<i> ab initio </i>molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode.</p>


2019 ◽  
Vol 21 (4) ◽  
pp. 1717-1723 ◽  
Author(s):  
D. Mihrin ◽  
J. Andersen ◽  
P. W. Jakobsen ◽  
R. Wugt Larsen

This work demonstrates how large-amplitude OH librational motion of H2O molecules directly reflects the microsolvation of organic compounds. The highly localized OH librational motion of the first solvating H2O molecule gives rise to a strong band origin νlib in the far-infrared spectral region, which is correlated quantitatively with the intermolecular hydrogen bond energy D0.


2019 ◽  
Vol 21 (34) ◽  
pp. 18699-18705 ◽  
Author(s):  
Erika Aloi ◽  
Rita Guzzi ◽  
Rosa Bartucci

Echo-detected EPR spectra are used to study the effects of acyl chain unsaturation on the librational motion of chain-labeled lipids in the low-temperature phases of POPC and DOPC bilayers.


Nano Letters ◽  
2017 ◽  
Vol 17 (7) ◽  
pp. 4151-4157 ◽  
Author(s):  
Myeongkee Park ◽  
Nikolay Kornienko ◽  
Sebastian E. Reyes-Lillo ◽  
Minliang Lai ◽  
Jeffrey B. Neaton ◽  
...  

Author(s):  
I. E. Nadezhdina ◽  
A. E. Zubarev ◽  
E. S. Brusnikin ◽  
J. Oberst

A new global control point network was derived for Enceladus, based on Cassini and Voyager-2 image data. Cassini images were taken from 2005 to 2014, for Voyager we have only one flyby in the middle of 1981. We have derived 3D Cartesian coordinates for 1128 control points as well as improved pointing data for 12 Voyager and 193 Cassini images in the Enceladus-fixed coordinate system. The point accuracies vary from 55 m to 2900 m (average point accuracy &ndash; 221 m). From tracking of the control points we detect a librational motion described by a model which includes 3 different periods and amplitudes (Rambaux et al., 2011). We determine the amplitudes for each term. Our new control point network has a higher number of point measurements and a higher accuracy than previous data (Giese et al., 2014).


Author(s):  
I. E. Nadezhdina ◽  
A. E. Zubarev ◽  
E. S. Brusnikin ◽  
J. Oberst

A new global control point network was derived for Enceladus, based on Cassini and Voyager-2 image data. Cassini images were taken from 2005 to 2014, for Voyager we have only one flyby in the middle of 1981. We have derived 3D Cartesian coordinates for 1128 control points as well as improved pointing data for 12 Voyager and 193 Cassini images in the Enceladus-fixed coordinate system. The point accuracies vary from 55 m to 2900 m (average point accuracy &ndash; 221 m). From tracking of the control points we detect a librational motion described by a model which includes 3 different periods and amplitudes (Rambaux et al., 2011). We determine the amplitudes for each term. Our new control point network has a higher number of point measurements and a higher accuracy than previous data (Giese et al., 2014).


2015 ◽  
Vol 36 (3) ◽  
pp. 038002
Author(s):  
P Onorato ◽  
M Malgieri ◽  
P Mascheretti ◽  
A De Ambrosis

Sign in / Sign up

Export Citation Format

Share Document