Solvent effects on the dissociation of benzoic acid in aqueous mixtures of 2-methoxyethanol and 1,2-dimethoxyethane at 25 °C

Author(s):  
Saroj K. Ghosh ◽  
Dilip. K. Hazra
2020 ◽  
Vol 234 (11-12) ◽  
pp. 1771-1787
Author(s):  
Sayyar Muhammad ◽  
Sofia Sanam ◽  
Hamayun Khan ◽  
Akhtar Muhammad ◽  
Sabiha Sultana

AbstractThe benzoic acid solubility in aqueous phase and in various aqueous mixtures of methanol, ethanol and 2-propanol was determined at temperatures ranging from 303 to 333 K by an analytical technique. The results showed that the solubility of the acid in alcohols-water binary mixtures is high as compared to pure aqueous phase. The addition of alcohols to water favors the dissolution of benzoic acid which increases further with the increase in alcohols content of water within the investigated temperature range. The benzoic acid solubility in water alone and aqueous mixtures of the selected alcohols was in the order of; 2-propanol in water > ethanol in water > methanol in water > pure water. It is also observed that within the investigated temperature range, the acid solubility increases with rise in temperature in both the aqueous phase and alcohols-water binary solvents. The logarithm of the mole fraction of the acid’s solubility also showed a linear trend against the temperature. The experimental results obtained in the current study were compared with the reported literature for the studied acid and other organic acids in various solvents and showing a good agreement. The study will have implications in the processes involving separation, crystallization and pharmaceutical formulation in various industries.


1986 ◽  
Vol 64 (8) ◽  
pp. 1521-1526 ◽  
Author(s):  
A. L. De ◽  
A. K. Atta

The thermodynamic first dissociation constants, [Formula: see text] of thymolsulfonephthalein (H2A), an uncharged acid, have been determined at 25 °C in aqueous mixtures of 10, 30, 50, 70, and 80 wt% acetonitrile (ACN), 11.52, 20.31, 29.64, and 36.83 wt% urea, 20, 40, 60, and 80 wt% dimethyl sulfoxide (DMSO) by spectrophotometric measurements. The solvent effect represented by ∂(ΔG0) = 2.303RT[p(sK)N − p(wK)N] is found to increase in ACN + H2O system as mol% ACN increases in the solvent. In contrast, the corresponding values in urea + H2O as well as DMSO + H2O solvent systems decrease with increase in proportion of organic component in the solvent, the decrease being sharp in urea + H2O. The results have been discussed in terms of the standard Gibbs energies of transfer of H+ from water to the mixed solvent, [Formula: see text] and the relative values of the standard Gibbs energies of transfer of HA−, [Formula: see text] and of [Formula: see text] in all the solvent systems. The overall dissociation behaviour of the acid (H2A) is found to be dictated by the specific solute-solvent interactions of the species participating in the dissociation equilibria.


1978 ◽  
Vol 82 (11) ◽  
pp. 1242-1245 ◽  
Author(s):  
Kaushik Das ◽  
Asim K. Das ◽  
Kumardev Bose ◽  
Kiron K. Kundu

1997 ◽  
Vol 62 (6) ◽  
pp. 913-924 ◽  
Author(s):  
Jiří Kulhánek ◽  
Oldřich Pytela

Eleven symmetrically 2,6-disubstituted benzoic acids (with the following substituents: OCH3, OC2H5, OC3H7, OCH(CH3)2, OC4H9, CH3, F, Cl, Br, I, and NO2) have been synthesized and their dissociation constants measured potentiometrically in methanol, ethanol, propan-1-ol, propan-2-ol, butan-2-ol, acetone, dimethyl sulfoxide, dimethylformamide, acetonitrile, pyridine, and 1,2-dichloroethane. The experimental data obtained have been analyzed from the point of view of solvent effects on acidity of the individual derivatives. Different behaviour found with benzoic acid and the disubstituted derivatives in protic solvents is due to changes in solvation. The different character of solvation of benzoic acid and the disubstituted derivatives depends on the type of substitution, being manifested only in 2,6-disubstituted benzoic acids. The graphical analysis has shown a distinct trend in the increase of magnitude of deviation of the point of benzoic acid in the series: propan-2-ol, butan-2-ol, propan-1-ol, ethanol, methanol. This order correlates with the steric demands of carbon chain of the alcohols used. The abnormal behaviour of benzoic acid in the dissociation in these alcohols as compared with that of its 2,6-disubstituted derivatives is due to the different extent of solvation of the reaction centre caused by steric hindrance. Against the expectation, benzoic acid appears to be a weaker acid in protic solvents, whereas its alkoxy derivatives are stronger acids. The solvation also minimizes the inductive effect of alkoxy groups in the symmetrically 2,6-disubstituted derivatives. In aprotic solvents the acidity of 2,6-dialkoxybenzoic acids is also increased, in this case as a result of sterically forced deviation of the reaction centre and/or the substituents out of the plane of benzene ring.


1991 ◽  
Vol 16 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Maria Luisa Moy� ◽  
Antonio Barrios ◽  
Maria del Mar Graciani ◽  
Rafael Jim�nez ◽  
Ernestina Mu�oz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document