scholarly journals Molecular mechanism of networking among DegP, Skp and SurA in periplasm for biogenesis of outer membrane proteins

2020 ◽  
Vol 477 (16) ◽  
pp. 2949-2965
Author(s):  
Chen Yang ◽  
Sijia Peng ◽  
Chunlai Chen ◽  
Xin Sheng Zhao

The biogenesis of outer membrane proteins (OMPs) is an extremely challenging process. In the periplasm of Escherichia coli, a group of quality control factors work together to exercise the safe-guard and quality control of OMPs. DegP, Skp and SurA are the three most prominent ones. Although extensive investigations have been carried out, the molecular mechanism regarding the networking among these proteins remains mostly mysterious. Our group has previously studied the molecular interactions of OMPs with SurA and Skp, using single-molecule detection (SMD). In this work, again using SMD, we studied how OmpC, a representative of OMPs, interacts with DegP, Skp and SurA collectively. Several important discoveries were made. The self-oligomerization of DegP to form hexamer occurs over hundred micromolars. When OmpC is in a monomer state at a low concentration, the OmpC·DegP6 and OmpC·DegP24 complexes form when the DegP concentration is around sub-micromolars and a hundred micromolars, respectively. High OmpC concentration promotes the binding affinity of DegP to OmpC by ∼100 folds. Skp and SurA behave differently when they interact synergistically with DegP in the presence of substrate. DegP can degrade SurA-protected OmpC, but Skp-protected OmpC forms the ternary complex OmpC·(Skp3)n·DegP6 (n = 1,2) to resist the DegP-mediated degradation. Combined with previous results, we were able to depict a comprehensive picture regarding the molecular mechanism of the networking among DegP, Skp and SurA in the periplasm for the OMPs biogenesis under physiological and stressed conditions.

2011 ◽  
Vol 438 (3) ◽  
pp. 505-511 ◽  
Author(s):  
Si Wu ◽  
Xi Ge ◽  
Zhixin Lv ◽  
Zeyong Zhi ◽  
Zengyi Chang ◽  
...  

The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone–substrate interaction may be essential for the quality control of the biogenesis of OMPs


2020 ◽  
Author(s):  
Sachith D. Gunasinghe ◽  
Kirstin D. Elgass ◽  
Toby D. M. Bell ◽  
Trevor Lithgow

Abstract In recent years Super-resolution microscopy has become an invaluable tool to noninvasively interrogate the membrane architecture of bacteria to study the spatial organization of proteins associated with membranes, which in turn help us to understand how bacteria have evolved to exploit environmental niches. Model systems like Escherichia coli and Caulobacter cresentus have been used to study the spatiotemporal organization of membrane proteins. Like most gram-negative bacteria, the outer membrane of E.coli is populated with β-barrel proteins, which serve as selective channels where exchange of small molecules take place. Surface exposed domains in these channels provide means to fluorescently label and utilise them for fluorescent microscopy studies to investigate their spatial organization at the outer membrane. Here, we describe a methodology to fluorescently label outer membrane proteins in E.coli and study their spatial organization using direct stochastic optical reconstruction microscopy (dSTORM).


2015 ◽  
Vol 43 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Zhi Xin Lyu ◽  
Xin Sheng Zhao

The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.


mBio ◽  
2021 ◽  
Author(s):  
Wei He ◽  
Gangjin Yu ◽  
Tianpeng Li ◽  
Ling Bai ◽  
Yuanyuan Yang ◽  
...  

Outer membrane proteins (OMPs) play critical roles in bacterial pathogenicity and provide a new niche for antibiotic development. A comprehensive understanding of the OMP quality control network will strongly impact antimicrobial discovery.


Sign in / Sign up

Export Citation Format

Share Document