scholarly journals Stimulation of pentose phosphate pathway dehydrogenase enzyme activities in ethionine-treated mice

1968 ◽  
Vol 106 (4) ◽  
pp. 769-776 ◽  
Author(s):  
Hsien-Gieh Sie ◽  
William H. Fishman

1. Mice treated with ethionine (intraperitoneally, 5mg./day for 4 days or 10mg./day for 3 days) showed a profound loss of hepatic glycogen, a decrease of glycogen synthetase activity, a development of hypoglycaemia, a two- to five-fold increase in the activity of glucose 6-phosphate dehydrogenase but no change in 6-phosphogluconate dehydrogenase and an earlier manifestation of the solubilization of phosphorylase as compared with glycogen synthetase. The administration of ATP did not prevent these effects. 2. During the early post-injection period (2–3 days) there was a further enhancement of the activity of glucose 6-phosphate dehydrogenase (tenfold) in the liver and a clear elevation of 6-phosphogluconate dehydrogenase activity (twofold). Subsequently, the glycogen concentration was restored, followed by an earlier reassociation of glycogen particle with phosphorylase than with glycogen synthetase, along with a disappearance of ethionine effect at about the eighteenth day. 3. Glucose 6-phosphate dehydrogenase from both control and ethionine-treated animals showed a marked preference for glucose 6-phosphate as substrate rather than for galactose 6-phosphate, whose rate of oxidation was only 10% of that of the glucose 6-phosphate. 4. Since actinomycin D, puromycin, 5-fluorouracil and dl-p-fluorophenylalanine failed to block the ethionine-enhanced glucose 6-phosphate dehydrogenase activity, the possibility that new enzyme protein synthesis is responsible for the effect is doubtful.

1965 ◽  
Vol 97 (1) ◽  
pp. 32-36 ◽  
Author(s):  
HG Sie ◽  
A Hablanian

1. Ethionine-treated mice showed a marked depletion in liver glycogen, a decrease of glycogen-synthetase activity, an increase in activity of glucose 6-phosphate dehydrogenase and the solubilization of phosphorylase. 2. The administration of cortisol or glucose did not alleviate these changes but the effect of ethionine was completely prevented in animals given methionine as well as ethionine. 3. The activities of the following enzymes were unchanged: hexokinase, glucokinase, glucose 6-phosphatase, phosphoglucomutase, 6-phosphogluconate dehydrogenase, UDP-glucose pyrophosphorylase, UDP-glucose dehydrogenase and pyruvate kinase.


1986 ◽  
Vol 238 (2) ◽  
pp. 553-559 ◽  
Author(s):  
S Kunjara ◽  
M Sochor ◽  
N Salih ◽  
P McLean ◽  
A L Greenbaum

Changes in the tissue content of phosphoribosyl pyrophosphate (PPRibP), glucose 6-phosphate, ribose 5-phosphate (Rib5P), RNA and DNA, of the activity of PPRibP synthetase (EC 2.7.6.1) and the conversion of [1-14C]- and [6-14C]-glucose into 14CO2 were measured at mid-lactation in the normal and diabetic rat and in pregnancy, lactation and mammary involution in the normal rat. The PPRibP, glucose 6-phosphate and Rib5P contents increase during pregnancy and early lactation to reach a plateau value at mid-lactation, before falling sharply during weaning. The PPRibP content, PPRibP synthetase activity and flux of glucose through the oxidative pentose phosphate pathway (PPP) all change in parallel during the lactation cycle. Similarly, after 3 and 5 days duration of streptozotocin-induced diabetes, ending on day 10 of lactation, there were parallel declines in PPRibP content, PPRibP synthetase and PPP activity. The effect of streptozotocin was prevented by pretreatment with nicotinamide and partially reversed by insulin administration. Addition of insulin to lactating rat mammary-gland slices incubated in vitro significantly raised the PPRibP content (+47%) and the activity of the PPP (+40%); phenazine methosulphate, which gives a 2-fold increase in PPP activity, raised the PPRibP content of lactating mammary gland slices by approx. 3-fold. It is concluded that Rib5P, generated in the oxidative segment of the PPP, is an important determinant of PPRibP synthesis in the lactating rat mammary gland and that insulin plays a central role in the regulation of the bioavailability of this precursor of nucleotide and nucleic acid synthesis.


1983 ◽  
Vol 57 (1) ◽  
pp. 59-68 ◽  
Author(s):  
P. N. Sharma ◽  
Sushila Mandawat

AbstractThe histochemical site and distribution of hexokinase, glycogen phosphorylase (GP Rylase), lactate dehydrogenase (LDH) (key enzymes of glycolysis), glucose-6-phosphate dehydrogenase (GPD) and 6-phosphogluconate dehydrogenase (6PGD) (pentose phosphate shunt enzymes), isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and α-ketoglutarate dehydrogenase (α-KDH) (key enzymes of Krebs' cycle), malate synthetase (MS) and isocitrate lyase (IL) (enzymes of glyoxylate shunt) in various tissues of Ganeo tigrinum from hibernating and non-hibernating Rana cyanophlyctis and R. tigrina were studied. Differences in their intensities were revealed. Weak activity of GP Rylase and strong activity of hexokinase in flukes from non-hibernating hosts indicates that they utilize glucose through glycolysis for energy turnover. Intense GP Rylase and weak hexokinase activity in worms from hibernating hosts indicates the utilization of glycogen. Strong activity of IDH, SDH, MDH, α-KGD, MS and IL was demonstrable in the tissues of flukes from non-hibernating hosts, suggesting that Krebs' cycle and glyoxylate shunt, respectively, were operating. Tissues of the fluke from hibernating hosts, on the other hand, displayed positive activity only for SDH and MDH; no activity for MS and IL, the enzymes of glyoxylate shunt, was observed, The activity of the above enzymes was found to be relatively low in worms from hibernating hosts.


2017 ◽  
Vol 10 (4) ◽  
pp. 148-154 ◽  
Author(s):  
Nuray Nuriye Ulusu ◽  
Müslüm Gök ◽  
Arzu Ayşe Sayin Şakul ◽  
Nuray Ari ◽  
Milan Stefek ◽  
...  

Abstract The pentose phosphate pathway and glutathione-associated metabolism are the main antioxidant cellular defense systems. This study investigated the effects of the powerful antioxidant SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b] indolinium dichloride) on pentose phosphate pathway (PPP) and glutathione-dependent enzyme activities in aged diabetic and aged matched control rats. Diabetes was induced by streptozotocin injection in rats aged 13-15 months. Diabetic and control rats were divided into two subgroups, one untreated and one treated with SMe1EC2 (10 mg/kg/day, orally) for 4 months. SMe1EC2 ameliorated body weight loss, but not hyperglycemia of aged diabetic rats. Diabetes resulted in decreased glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD) and glutathione-S-transferase (GST), yet in unchanged glutathione reductase (GR) in the liver of aged diabetic rats. In the liver of the aged control rats, SMe1EC2 did not affect G6PDH, 6PGDH and GR, but it inhibited GST. SMe1EC2 also failed to affect diabetes-induced decline in 6PGDH, it ameliorated G6PDH but produced further decline in GST in the liver of aged diabetic rats. In the kidney of aged rats, G6PDH and GST were found to be comparable among the groups, but diabetes up-regulated 6PGDH and GR; these alterations were prevented by SMe1EC2. In the heart of aged diabetic rats, while GST remained unchanged, the recorded increase in G6PD, 6PGD, GR was prevented by SMe1EC2. Furthermore, an unchanged GR and remarkable increases in G6PD, 6PGD and GST were found in the lung of the aged diabetic group. These alterations were completely prevented by SMe1EC2. The results suggest that in aged rats SMe1EC2 can ameliorate the response of the kidney, heart and lung but not that of the liver against diabetes-induced glucotoxicity by interfering with the activity of redox network enzymes.


1978 ◽  
Vol 24 (6) ◽  
pp. 885-889 ◽  
Author(s):  
J Deutsch

Abstract Erythrocyte glucose-6-phosphate dehydrogenase activity is measured with a centrifugal analyzer by use of a commercial reagent kit and of the reaction glucose-6-phosphate + NADP+ leads to 6-phosphogluconolactone + NADPH. Rate of production of NADPH is measured and related to hemoglobin concentration. Maleimide is added to inhibit further production of NADPH in a secondary reaction by endogenous 6-phosphogluconate dehydrogenase. The method is compared with others that are designed to circumvent the secondary reaction by either (a) addition of excess phosphogluconate dehydrogenase to drive the secondary reaction to completion or (b) inhibition of endogenous phosphogluconate dehydrogenase by 2,3-diphosphoglycerate. The present method has the advantages that reaction rate more quickly becomes linear and reagent cost is less as compared with other methods. The within-run coefficient of variation was 3%. The various methods investigated showed good statistical correlation.


1974 ◽  
Vol 20 (10) ◽  
pp. 1349-1352 ◽  
Author(s):  
John F Nicholson ◽  
Selma H Bodourian ◽  
Michael A Pesce

Abstract We describe an accurate automated method for measuring activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) in erythrocytes with a centrifugal analyzer. Blood is collected in microhematocrit tubes, centrifuged, and the erythrocytes are lysed with digitonin. Glucose-6-phosphate dehydrogenase activity is determined by mixing the hemolysate with glucose-6-phosphate, NADP+, and 6-phosphogluconate dehydrogenase #{ 233} (EC 1.1.1.44) in triethanolamine—EDTA buffer at pH 7.6, and measuring the rate of NADPH production for 3 min. Under these conditions 2 mol of NADPH are produced per mole of glucose-6-phosphate oxidized, ensuring the accuracy of the method and increasing its sensitivity. Activity is referred to hemoglobin, measured as cyanmethemoglobin. Activity of glucose-6-phosphate dehydrogenase added to hemolysates was well accounted for. Results obtained by our method and by the method of Bishop [J. Lab. Clin. Med. 68, 149 (1966)] are virtually identical. Our method requires a small amount of blood and is accurate and rapid; thus it is well suited for use in surveying large populations for glucose-6-phosphate dehydrogenase deficiency. A simple modification of the method may be used to determine the activity of 6-phosphogluconate dehydrogenase.


1967 ◽  
Vol 22 (11) ◽  
pp. 1200-1215 ◽  
Author(s):  
U. Heber ◽  
U. W. Hallier ◽  
M. A. Hudson ◽  
B. von der Groeben ◽  
R. Ernst ◽  
...  

1. The interrelationship of metabolic activities in chloroplasts and cytoplasm of leaf cells of spinach, sugar beet and Elodea has been investigated. Different methods have been adopted to study the intracellular localization of enzymes and the flow of phosphorylated intermediates across the chloroplast membrane. The flow of substrates was investigated by determining the rates of the conversion of substrates added to aqueously isolated chloroplasts, prior to and after destruction of the outer chloroplast membrane. The observed differences yielded information as to whether a substrate could traverse the chloroplast membrane.Two methods mere used to investigate the localization of enzymes :a) The percentage distribution of photosynthetic and respiratory enzymes in chloroplasts and cytoplasm was calculated from data on enzyme activities in non-aqueous cell fractions.b) Low levels of enzymes in chloroplasts in the presence of high cytoplasmatic levels were detected by assaying enzyme activities in preparations of aqueously isolated chloroplasts prior to and after ultrasonic destruction of the outer chloroplast membrane.2. If chloroplasts are isolated in aqueous sucrose buffer, their outer membranes act as an efficient barrier against the penetration of NADP, RuDP, GAP and, in some but not all experiments, of FMP and GMP. PGA, DHAP and, probably to a lesser extent, aspartate, ɑ-ketoglutarate, oxaloacetate and FDP can traverse this membrane. Chloroplast membranes are significantly altered when isolated in NaCI-buffer systems and do not correspond to the in vivo situation.3. The conversion of Ri-5-P to RuDP occurs exclusively or nearly exclusively in the chloroplasts indicating that phosphoribulokinase and/or ribosephosphate isomerase are located only there.4. The conversion of Ri-5-P to GAP and SuMP, which is catalyzed by the enzymes ribosephosphate isomerase, xylulosephosphate epimerase and transketolase, proceeds likewise only or at least predominantly in the chloroplasts and not, or only to a small extent, in the cytoplasm.5. The major parts of glucose-6-phosphate dehydrogenase and of 6-phosphogluconate dehydrogenase reside in the cytoplasm. However, a small, but significant, level of these enzymes is to be found also in the chloroplasts. Hexokinase and transaldolase are also present there. Pyruvate kinase and phosphofructokinase appear to be absent from chloroplasts.6. Since, with the presence of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, hexokinase, transaldolase and enzymes of the Calvin cycle, the enzymic machinery of the oxidative pentose phosphate pathway is complete in the chloroplasts, the results suggest that chloroplasts are engaged in the oxidative decomposition of carbohydrates.7. In the dark the oxidative pentose phosphate pathway requires the control of NADPH formation and the transfer of hydrogen across the chloroplast membrane.8. The available data on the intracellular localization of enzymes and on the kinetics of the distribution of labelled intermediates show that the photosynthetic carbon cycle operates exclusively within the chloroplasts. There is nothing to suggest that enzymes of chloroplasts and cytoplasm cooperate in the cyclic regeneration of the carbon acceptor molecule. However, the existence of phosphorylated transport metabolites suggests that secondary reactions of photosynthesis such as sucrose and amino acid synthesis, which proceed, at least in part, outside the chloroplasts, are directly linked with chloroplastic reactions by activated (phosphorylated) intermediates.


Sign in / Sign up

Export Citation Format

Share Document