scholarly journals Antioxidant SMe1EC2 modulates pentose phosphate pathway and glutathione-dependent enzyme activities in tissues of aged diabetic rats

2017 ◽  
Vol 10 (4) ◽  
pp. 148-154 ◽  
Author(s):  
Nuray Nuriye Ulusu ◽  
Müslüm Gök ◽  
Arzu Ayşe Sayin Şakul ◽  
Nuray Ari ◽  
Milan Stefek ◽  
...  

Abstract The pentose phosphate pathway and glutathione-associated metabolism are the main antioxidant cellular defense systems. This study investigated the effects of the powerful antioxidant SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b] indolinium dichloride) on pentose phosphate pathway (PPP) and glutathione-dependent enzyme activities in aged diabetic and aged matched control rats. Diabetes was induced by streptozotocin injection in rats aged 13-15 months. Diabetic and control rats were divided into two subgroups, one untreated and one treated with SMe1EC2 (10 mg/kg/day, orally) for 4 months. SMe1EC2 ameliorated body weight loss, but not hyperglycemia of aged diabetic rats. Diabetes resulted in decreased glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD) and glutathione-S-transferase (GST), yet in unchanged glutathione reductase (GR) in the liver of aged diabetic rats. In the liver of the aged control rats, SMe1EC2 did not affect G6PDH, 6PGDH and GR, but it inhibited GST. SMe1EC2 also failed to affect diabetes-induced decline in 6PGDH, it ameliorated G6PDH but produced further decline in GST in the liver of aged diabetic rats. In the kidney of aged rats, G6PDH and GST were found to be comparable among the groups, but diabetes up-regulated 6PGDH and GR; these alterations were prevented by SMe1EC2. In the heart of aged diabetic rats, while GST remained unchanged, the recorded increase in G6PD, 6PGD, GR was prevented by SMe1EC2. Furthermore, an unchanged GR and remarkable increases in G6PD, 6PGD and GST were found in the lung of the aged diabetic group. These alterations were completely prevented by SMe1EC2. The results suggest that in aged rats SMe1EC2 can ameliorate the response of the kidney, heart and lung but not that of the liver against diabetes-induced glucotoxicity by interfering with the activity of redox network enzymes.

1967 ◽  
Vol 22 (11) ◽  
pp. 1200-1215 ◽  
Author(s):  
U. Heber ◽  
U. W. Hallier ◽  
M. A. Hudson ◽  
B. von der Groeben ◽  
R. Ernst ◽  
...  

1. The interrelationship of metabolic activities in chloroplasts and cytoplasm of leaf cells of spinach, sugar beet and Elodea has been investigated. Different methods have been adopted to study the intracellular localization of enzymes and the flow of phosphorylated intermediates across the chloroplast membrane. The flow of substrates was investigated by determining the rates of the conversion of substrates added to aqueously isolated chloroplasts, prior to and after destruction of the outer chloroplast membrane. The observed differences yielded information as to whether a substrate could traverse the chloroplast membrane.Two methods mere used to investigate the localization of enzymes :a) The percentage distribution of photosynthetic and respiratory enzymes in chloroplasts and cytoplasm was calculated from data on enzyme activities in non-aqueous cell fractions.b) Low levels of enzymes in chloroplasts in the presence of high cytoplasmatic levels were detected by assaying enzyme activities in preparations of aqueously isolated chloroplasts prior to and after ultrasonic destruction of the outer chloroplast membrane.2. If chloroplasts are isolated in aqueous sucrose buffer, their outer membranes act as an efficient barrier against the penetration of NADP, RuDP, GAP and, in some but not all experiments, of FMP and GMP. PGA, DHAP and, probably to a lesser extent, aspartate, ɑ-ketoglutarate, oxaloacetate and FDP can traverse this membrane. Chloroplast membranes are significantly altered when isolated in NaCI-buffer systems and do not correspond to the in vivo situation.3. The conversion of Ri-5-P to RuDP occurs exclusively or nearly exclusively in the chloroplasts indicating that phosphoribulokinase and/or ribosephosphate isomerase are located only there.4. The conversion of Ri-5-P to GAP and SuMP, which is catalyzed by the enzymes ribosephosphate isomerase, xylulosephosphate epimerase and transketolase, proceeds likewise only or at least predominantly in the chloroplasts and not, or only to a small extent, in the cytoplasm.5. The major parts of glucose-6-phosphate dehydrogenase and of 6-phosphogluconate dehydrogenase reside in the cytoplasm. However, a small, but significant, level of these enzymes is to be found also in the chloroplasts. Hexokinase and transaldolase are also present there. Pyruvate kinase and phosphofructokinase appear to be absent from chloroplasts.6. Since, with the presence of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, hexokinase, transaldolase and enzymes of the Calvin cycle, the enzymic machinery of the oxidative pentose phosphate pathway is complete in the chloroplasts, the results suggest that chloroplasts are engaged in the oxidative decomposition of carbohydrates.7. In the dark the oxidative pentose phosphate pathway requires the control of NADPH formation and the transfer of hydrogen across the chloroplast membrane.8. The available data on the intracellular localization of enzymes and on the kinetics of the distribution of labelled intermediates show that the photosynthetic carbon cycle operates exclusively within the chloroplasts. There is nothing to suggest that enzymes of chloroplasts and cytoplasm cooperate in the cyclic regeneration of the carbon acceptor molecule. However, the existence of phosphorylated transport metabolites suggests that secondary reactions of photosynthesis such as sucrose and amino acid synthesis, which proceed, at least in part, outside the chloroplasts, are directly linked with chloroplastic reactions by activated (phosphorylated) intermediates.


1969 ◽  
Vol 111 (5) ◽  
pp. 713-725 ◽  
Author(s):  
F. Novello ◽  
J. A. Gumaa ◽  
Patricia McLean

1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ‘overshoot’ effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30–40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine–zinc–insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine–zinc–insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.


1992 ◽  
Vol 2 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Johan C. Pretorius ◽  
J. G. Chris Small

AbstractSubmerging Phaseolus vulgaris cv. Top Crop seeds in air-saturated water for 16 h markedly depresses subsequent germination. This is termed soaking injury. Soaking injury does not occur in seeds soaked in CO2-saturated water. Previous studies have shown that soaking injury can be alleviated by drying seeds or removing seed coats. Submergence therefore leads to a situation in bean seeds which is similar to secondary dormancy.As with dormant seeds, C6/C1 ratios of embryonic axes of seeds soaked in air-saturated water remained high (0.8–1.0) during and after soaking. This was paralleled by low activities of glucose-6-phosphate dehydrogenase (EC.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). In axes of seeds soaked in CO2-saturated water and in unsoaked seeds C6/C1 ratios declined steadily during soaking/imbibition and reached values of around 0.3 after germination. Slight increases ofglucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities occurred in the pre-germination phase. This was followed by a massive increase after radicle emergence. Synthesis of the plastid isoenzymes was a post-germinative event.It appears that soaking injury depresses protein synthesis. Lack of oxidative pentose phosphate pathway activity appears to be a causative factor in soaking injury.


1990 ◽  
Vol 115 (6) ◽  
pp. 987-990 ◽  
Author(s):  
Hening Hu ◽  
Gary A. Couvillon

The activities of catalase and of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), the two key enzymes in the pentose phosphate pathway (ppp), were measured in the seeds of Prunus persica (L.) Batsch var. nectarina Maxim `Nectarine 7'. The seeds were subjected to three imbibition treatments: 1) continuous 24C; 2) continuous 4C; and 3) application of thiourea (TU)/gibberellic acid (GA) at various concentrations to seed held at 24C then subsequently chilled at 4C. Treatments of continuous 24 or 4C indicated that catalase, G6PDH, and 6PGDH exhibited significant activity increases only when the seeds obtained germination potential, which occurred in the seeds chilled for 7 weeks at 4C. Seeds held at 24C did not germinate and showed little change with time in G6PDH and 6PGDH activity. There was only a slight increase in catalase activity beginning 3 weeks following treatment initiation and a decrease in activity following 13 weeks of treatment. Thiourea treatment resulted in an inhibition of catalase activity and a stimulation of G6PDH, but had no effect on 6PGDH activity. However, no correlation between enzymic activity and seed germination was found. The results strongly questioned the role of the ppp and catalase activity in dormancy control as previously hypothesized.


Weed Science ◽  
1978 ◽  
Vol 26 (4) ◽  
pp. 349-351 ◽  
Author(s):  
E. W. Smith ◽  
B. J. Reger ◽  
G. H. Egley

Key metabolic enzymes and germination were studied in developing and mature, dormant and nondormant prickly sida(Sida spinosaL.) seeds. Isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, fructose-1,6-diphosphatase, and phosphofructokinase activities were determined in developing and mature prickly sida seeds. Developing seeds less than 7 days after anthesis and at 17 days or greater after anthesis were unable to germinate. The 7-day-old seeds lacked all but fructose-1,6-diphosphatase activity. The 17-day-old seeds demonstrated all enzyme activities but failed to germinate because dehydration had occurred and seeds were unable to imbibe sufficient water without an afterripening period. Comparison of enzyme activities of dormant and nondormant seeds on incubation showed that only glucose-6-phosphate dehydrogenase was considerably different within the first 8 h of incubation. Nondormant seeds had considerable glucose-6-phosphate dehydrogenase activity before germination (radical protrusion at 8 h), suggesting an active pentose phosphate pathway.


1969 ◽  
Vol 114 (2) ◽  
pp. 253-264 ◽  
Author(s):  
K. A. Gumaa ◽  
F. Novello ◽  
Patricia McLean

1. Measurements were made of the activities of the enzymes of the pentose phosphate pathway concerned in both the oxidative (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and the non-oxidative (ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) reactions of this pathway, together with hexokinase and phosphoglucose isomerase, in adipose tissue in a variety of nutritional and hormonal conditions. 2. Starvation for 2 days caused a significant decrease in the activities of all the enzymes of the pentose phosphate pathway, with the exception of glucose 6-phosphate dehydrogenase, when expressed as activity/2 fat-pads; only the activities of ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase were significantly decreased on the basis of activity/mg. of protein. Re-feeding with a high-carbohydrate or high-fat diet for 3 days restored the activity of all the enzymes of the pentose phosphate pathway to the range of the control values, with the exception of transketolase, which showed a marked ‘overshoot’ in rats re-fed with carbohydrate. Starvation for 3 days caused a marked decrease in the activities of glucose 6-phosphate dehydrogenase and transketolase. 3. On the basis of activity/two fat-pads, alloxan-diabetes caused a marked decrease, to about half the control value, in the activities of all the enzymes concerned in the pentose phosphate pathway, transketolase showing the smallest decrease; hexokinase and phosphoglucose isomerase activities were also decreased. Treatment with insulin for 3 and 7 days raised the activities to normal or supranormal values, transketolase showing the most marked ‘overshoot’ effect. On the basis of activity/mg. of protein the activity of none of the enzymes was significantly decreased in alloxan-diabetes; transketolase and transaldolase activities were raised above the control values. With insulin treatment for 3 or 7 days the activities of all the enzymes were significantly increased, except that of ribulose 5-phosphate epimerase at the shorter time-interval. Glucagon treatment did not alter any of the enzyme activities expressed on either basis. 4. Thyroidectomy caused a decrease of 30–40% in the activities of enzymes of the pentose phosphate pathway, except for transketolase activity, which fell to 50% of the control value. Little change occurred in adipose-tissue weight or protein content. 5. Adrenalectomy caused a decrease of 40% in the activity of glucose 6-phosphate dehydrogenase and of 20–30% in the activities of the remaining enzymes of the pentose phosphate pathway; hexokinase activity was also decreased. Treatment with cortisone for 3 days did not significantly raise the activity from that found in adrenalectomized rats. Treatment of normal rats with high doses of cortisone had no significant effect on the activities of the enzymes of the pentose phosphate pathway in adipose tissue. 6. The changes in enzyme activities are discussed in relation to: (a) the concept of constant-proportion groups of enzymes; (b) the known changes in the flux of glucose through alternative metabolic pathways; (c) the pattern of change found in liver with similar hormonal and dietary conditions.


1972 ◽  
Vol 50 (4) ◽  
pp. 366-376 ◽  
Author(s):  
G. O. Korsrud ◽  
R. L. Baldwin

The effects of adrenalectomy and adrenalectomy–ovariectomy on the 5th day of lactation followed by cortisol and estrogen therapies on enzyme activities in rat mammary glands were investigated. This stage of lactation was selected because mammary secretory cell proliferation is essentially complete at this time thereby enabling study of the effects of cortisol and estrogen on enzyme levels in a nonproliferating secretory cell population. Eighteen enzymes were selected for study on the bases of their respective roles in milk biosynthesis and carbohydrate and energy metabolism and/or on the basis of previous studies indicating that their activities increase during midlactation or are regulated, in part, by steroid hormones. After adrenalectomy on the 5th day of lactation, cortisol therapy was required for normal increases in the activities of succinic dehydrogenase, citrate cleavage enzyme, malic enzyme, UDPglucose pyrophosphorylase, UDPglucose 4-epimerase, and glucose-6-phosphate dehydrogenase. The activities of UDPglucose pyrophosphorylase and glucose-6-phosphate dehydrogenase were higher than normal in cortisol-treated animals. Cortisol therapy during the last 2 days of the experiment increased the activity of UDPglucose pyrophosphorylase and possibly citrate cleavage enzyme. The activities of α-glycerolphosphate dehydrogenase, phosphoglucomutase, 6-phosphogluconate dehydrogenase, pentose phosphate metabolizing ability, hexokinase, phosphofructokinase, fructose-1,6-diphosphate aldolase, pyruvate kinase, lactic dehydrogenase, aspartate aminotransferase, isocitrate dehydrogenase, and extramitochondrial malate dehydrogenase were not notably affected by adrenalectomy or cortisol therapy. The activities of 6-phosphogluconate dehydrogenase, pentose phosphate metabolizing ability, phosphofructokinase, and pyruvate kinase may have increased after the 5th day of lactation in adrenalectomized as well as in normal animals. Combining ovariectomy with adrenalectomy reduced pup weight gains more than adrenalectomy alone, but did not further decrease significantly the activities of any of the enzymes measured. Ovariectomy had no effect when cortisol was administered. Cortisol therapy completely reversed adverse effects of estrogen given to adrenalectomized–ovariectomized animals. On the bases of these and previous data, it was concluded that cortisol regulates the rates of synthesis of several mammary gland enzymes during midlactation.


1980 ◽  
Vol 186 (3) ◽  
pp. 799-803 ◽  
Author(s):  
A Andrés ◽  
J Satrústegui ◽  
A Machado

The behaviours of the principal NADPH-producing enzymes (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, cytoplasmic and mitochondrial ‘malic’ enzyme and NAPD+-dependent isocitrate dehydrogenase) were studied during the development of rat heart and compared with those in brain and liver. 1. The enzymes belonging to the pentose phosphate pathway exhibit lower activities in heart than in other tissues throughout development. 2. The pattern of induction of heart cytoplasmic and mitochondrial ‘malic’ enzymes does not parallel that found in liver. Heart mitochondrial enzyme is slowly induced from birth onwards. 3. NADP+-dependent isocitrate dehydrogenase has similar activities in all tissues in 18-day foetuses. 4. Heart mitochondrial NADP+-dependent isocitrate dehydrogenase is greatly induced in the adult, where it attains a 10-fold higher activity than in liver. 5. The physiological functions of mitochondrial ‘malic’ enzyme and NADP+-dependent isocitrate dehydrogenase are discussed.


Sign in / Sign up

Export Citation Format

Share Document