phosphoribosyl pyrophosphate
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol Volume 15 ◽  
pp. 353-358
Author(s):  
Qingfei Chu ◽  
Xinyu Gu ◽  
Qiuxian Zheng ◽  
Jing Wang ◽  
Haihong Zhu

2021 ◽  
Vol 22 (23) ◽  
pp. 13075
Author(s):  
Xingping Chen ◽  
Junyi Luo ◽  
Jie Liu ◽  
Ting Chen ◽  
Jiajie Sun ◽  
...  

MiR-143 play an important role in hepatocellular carcinoma and liver fibrosis via inhibiting hepatoma cell proliferation. DNA methyltransferase 3 alpha (DNMT3a), as a target of miR-143, regulates the development of primary organic solid tumors through DNA methylation mechanisms. However, the effect of miR-143 on DNA methylation profiles in liver is unclear. In this study, we used Whole-Genome Bisulfite Sequencing (WGBS) to detect the differentially methylated regions (DMRs), and investigated DMR-related genes and their enriched pathways by miR-143. We found that methylated cytosines increased 0.19% in the miR-143 knock-out (KO) liver fed with high-fat diet (HFD), compared with the wild type (WT). Furthermore, compared with the WT group, the CG methylation patterns of the KO group showed lower CG methylation levels in CG islands (CGIs), promoters and hypermethylation in CGI shores, 5′UTRs, exons, introns, 3′UTRs, and repeat regions. A total of 984 DMRs were identified between the WT and KO groups consisting of 559 hypermethylation and 425 hypomethylation DMRs. Furthermore, DMR-related genes were enriched in metabolism pathways such as carbon metabolism (serine hydroxymethyltransferase 2 (Shmt2), acyl-Coenzyme A dehydrogenase medium chain (Acadm)), arginine and proline metabolism (spermine synthase (Sms), proline dehydrogenase (Prodh2)) and purine metabolism (phosphoribosyl pyrophosphate synthetase 2 (Prps2)). In summary, we are the first to report the change in whole-genome methylation levels by miR-143-null through WGBS in mice liver, and provide an experimental basis for clinical diagnosis and treatment in liver diseases, indicating that miR-143 may be a potential therapeutic target and biomarker for liver damage-associated diseases and hepatocellular carcinoma.


2021 ◽  
Vol 57 (6) ◽  
pp. 1310-1321
Author(s):  
Hai-Jing Liu ◽  
Zhi-Ling Yang ◽  
Lin-Ling Ren ◽  
Yi-Ming Wang ◽  
Xin Wang ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11763
Author(s):  
Magda Chalecka ◽  
Adam Kazberuk ◽  
Jerzy Palka ◽  
Arkadiusz Surazynski

Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)—the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1128
Author(s):  
Yulia Abramchik ◽  
Evgeniy Zayats ◽  
Maria Kostromina ◽  
Dmitry Lykoshin ◽  
Ilya Fateev ◽  
...  

We report the spatial structure of phosphoribosyl pyrophosphate synthetase 2 from the thermophilic bacterium Thermus thermophilus HB27 (TthPRPPS2) obtained at a 1.85 Å resolution using a diffraction set collected from rhombohedral crystals (space group R32-h), grown with lithium sulfate as a precipitant. This crystal structure was compared with the structure of TthPRPPS2, previously obtained at a 2.2 Å resolution using diffraction sets from the tetragonal crystals (space group P41212), grown with ammonium sulfate as a precipitant. The comparison of these structures allows the study of the differences between protein molecules in both crystalline structures, as well as the packaging of enzyme molecules in crystals of both spatial groups. Our results may contribute to the research of the structural basis of catalytic activity and substrate specificity of this enzyme.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sera Jung ◽  
Kwang Min Koo ◽  
Jaihyunk Ryu ◽  
Inwoo Baek ◽  
Soon-Jae Kwon ◽  
...  

The enzyme phosphoribosyl pyrophosphate synthase (PRPS) catalyzes the conversion of ribose 5-phosphate into phosphoribosyl diphosphate; the latter is a precursor of purine and pyrimidine nucleotides. Here, we investigated the function of PRPS from the single-celled green alga Chlamydomonas reinhardtii in its response to DNA damage from gamma radiation or the alkylating agent LiCl. CrPRPS transcripts were upregulated in cells treated with these agents. We generated CrPRPS-overexpressing transgenic lines to study the function of CrPRPS. When grown in culture with LiCl or exposed to gamma radiation, the transgenic cells grew faster and had a greater survival rate than wild-type cells. CrPRPS overexpression enhanced expression of genes associated with DNA damage response, namely RAD51, RAD1, and LIG1. We observed, from transcriptome analysis, upregulation of genes that code for key enzymes in purine metabolism, namely ribonucleoside-diphosphate pyrophosphokinase subunit M1, adenylate kinase, and nucleoside-diphosphate kinase. We conclude that CrPRPS may affect DNA repair process via regulation of de novo nucleotide synthesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dong Xu ◽  
Fei Yang ◽  
Yongchao Fan ◽  
Wanling Jing ◽  
Jianfei Wen ◽  
...  

Growing evidences suggest that long non-coding RNAs (lncRNAs) are closely correlated to the development of human cancer, such as colorectal cancer (CRC). A previous report suggested that DLEU1 accelerated CRC development. However, DLEU1’s underlying mechanism in CRC remains unclear. In our study, the level of DLEU1 in CRC tissues is investigated by qRT-PCR. Our data exhibited that DLEU1 level was observably increased in CRC tissues and CRC cell lines and was closely associated with bad prognosis of CRC patients. CRC cell proliferation was repressed by sh-LncRNA DLEU1, whereas cell apoptosis was markedly stimulated. Moreover, knockdown of DLEU1 inhibited cell migration and invasion. Mechanistically, through interacting with miR-320b in CRC, DLEU1 promoted the level of PRPS1 which was a target of miR-320b. The rescue experiment confirmed that knockdown of DLEU1 repressed cell proliferation, migration and invasion while stimulated cell apoptosis via miR-320b/phosphoribosyl pyrophosphate synthetase 1 (PRPS1) axis. Meanwhile, the data of xenograft model exhibited that inhibition of DLEU1 suppressed tumor growth in vivo. In summary, DLEU1 knockdown may repress PRPS1 expression via miR-320b, and then repress cell proliferation, migration and invasion while stimulate cell apoptosis. Our research may provide a novel target for the treatment of CRC.


Sign in / Sign up

Export Citation Format

Share Document