scholarly journals The binding of haptens by the polypeptide chains of rabbit antibody molecules

1973 ◽  
Vol 133 (4) ◽  
pp. 827-836 ◽  
Author(s):  
G. T. Stevenson

1. The binding of haptens by the polypeptide chains derived from two rabbit immunoglobulin G antibodies was examined by gel chromatography and equilibrium dialysis. 2. The γ chains were examined in a dilute sodium acetate buffer, pH5.4, in which they exist as a monodisperse solution of dimers; aggregation of the protein promoted by some haptens had to be avoided. These chains exhibited variable extents of binding, reflecting the specificities of the parent antibody molecules, usually with only small increments above the binding by γ chains from normal immunoglobulin G. 3. The light chains existed as an interconverting mixture of monomers and dimers in all buffers of near neutral pH that were examined. They bound small amounts of hapten, again broadly reflecting the specificities of the parent antibody molecules. 4. For both the γ and light chains the dimeric state appeared necessary for appreciable binding of hapten. Apparently in each case the partners in the dimer interact in a manner analogous to the γ chain–light chain interaction in the parent antibody molecule, to give a site analogous to the antibody site. This implies that the binding of antigens by isolated chains has a large fortuitous element, providing no reliable indication of their contributions to the original antibody sites.

1973 ◽  
Vol 51 (10) ◽  
pp. 1355-1364 ◽  
Author(s):  
K. A. Kelly ◽  
A. H. Sehon ◽  
A. Froese

Kinetic and equilibrium studies were performed on the reactions of the hapten ε-dinitrophenyl-lysine with specific intact antibodies, reduced, alkylated, and polyalanylated antibodies, and reduced, alkylated, and polyalanylated γ-chains. No reaction was detected between the hapten and light chains. The γ-chains were found to have 0.5 combining sites per chain, and thin layer gel chromatography revealed that they existed as monomers. The rate constant of association for the reaction of γ-chains with hapten was found to be almost 1000 times lower than that for the corresponding reaction with the parent antibody. Differences in the rate constants of dissociation were much less pronounced. These results suggested that the combining site in the separated γ-chain had undergone a change in conformation.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 486-489 ◽  
Author(s):  
CA Fulcher ◽  
JE Gardiner ◽  
JH Griffin ◽  
TS Zimmerman

Abstract Purified human factor VIII procoagulant protein (VIII:C) was treated with purified human activated protein C (APC) and the loss of VIII:C activity correlated with proteolysis of the VIII:C polypeptides. APC proteolyzed all VIII:C polypeptides with mol wt = 92,000 or greater, but not the doublet at mol wt = 79–80,000. These results and our previous thrombin activation studies of purified VIII:C, are analogous with similar studies of factor V and form the basis for the following hypothesis: activated VIII:C consists of heavy and light chain polypeptides [mol wt = 92,000 and mol wt = 79–80,000 (or 71–72,000), respectively] which are similar in Mr to the heavy and light chains of activated factor V. Thrombin activates VIII:C and V by generating these polypeptide chains from larger precursors and APC inactivates both molecules by cleavage at a site located in the heavy chain region of activated VIII:C and V.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 486-489 ◽  
Author(s):  
CA Fulcher ◽  
JE Gardiner ◽  
JH Griffin ◽  
TS Zimmerman

Purified human factor VIII procoagulant protein (VIII:C) was treated with purified human activated protein C (APC) and the loss of VIII:C activity correlated with proteolysis of the VIII:C polypeptides. APC proteolyzed all VIII:C polypeptides with mol wt = 92,000 or greater, but not the doublet at mol wt = 79–80,000. These results and our previous thrombin activation studies of purified VIII:C, are analogous with similar studies of factor V and form the basis for the following hypothesis: activated VIII:C consists of heavy and light chain polypeptides [mol wt = 92,000 and mol wt = 79–80,000 (or 71–72,000), respectively] which are similar in Mr to the heavy and light chains of activated factor V. Thrombin activates VIII:C and V by generating these polypeptide chains from larger precursors and APC inactivates both molecules by cleavage at a site located in the heavy chain region of activated VIII:C and V.


1984 ◽  
Vol 159 (4) ◽  
pp. 1096-1104 ◽  
Author(s):  
M Taniguchi ◽  
T Tokuhisa ◽  
T Itoh ◽  
M Kanno

The functional roles of the two polypeptide chains that compose the T cell suppressor factor (TsF) that mediates the antigen-specific and genetically restricted suppressor function were studied by using the heavy or light chains isolated from the conventional TsF or the 11S and 13S mRNA translation products of TsF. Either the heavy or the light chain of mRNA translation products reconstitutes the active TsF that suppresses the antibody response in an antigen-specific and genetically restricted manner when it is combined with the isolated heavy or light chain from the conventional TsF. As a consequence, the antigen-binding heavy chain mediates the antigen specificity of TsF. On the other hand, the I-J-positive light chain works as an element to determine the genetic restriction specificity. Thus, the identity of the histocompatibility between the I-J haplotypes on the light chain and the responding cell is essential for the functional expression of TsF. No genetic preference, however, was observed, in the association of the heavy and light chains of TsF.


1974 ◽  
Vol 139 (1) ◽  
pp. 135-149 ◽  
Author(s):  
Christopher E. Fisher ◽  
Elizabeth M. Press

The binding sites of rabbit antibodies with affinity for the haptenic group 4-azido-2-nitrophenyl-lysine have been specifically labelled by photolysis of the hapten–antibody complex. The extent of covalent labelling was 0.5–0.9mol of hapten bound/mol of antibody and, by using an immunoadsorbent, antibody with 1.3mol of hapten/mol was obtained. The antibody was specifically labelled in the binding site and the ratio of labelling of heavy and light chains was in the range 3.3–5.0. The labelled heavy chains were cleaved by CNBr treatment and after reduction and alkylation of the intrachain bonds, were digested with trypsin. Evidence is presented that two regions of the heavy chain, positions 29–34 and 95–114, together contain about 80% of the label on the heavy chain; these two regions respectively include two of the hypervariable regions of rabbit heavy chain.


1989 ◽  
Vol 35 (5) ◽  
pp. 844-848
Author(s):  
D L Kalpaxis ◽  
E E Giannoulaki

Abstract Serum from a patient with hepatocellular carcinoma contained an abnormal isoenzyme of lactate dehydrogenase (LDH; EC 1.1.1.27), LDH-1ex, that on electrophoresis on 10-g/L agarose gel migrated anodally to the LDH-1 band. This isoenzyme was partly purified by ultrafiltration and preparative electrophoresis. Gel chromatography and sodium dodecyl sulfate/polyacrylamide gel electrophoresis studies of the resulting LDH-1ex preparation suggested that this isoenzyme is probably a tetramer made up of four single polypeptide chains (monomers), each having a molecular mass of about 32,000 Da. LDH-1ex was heat stable and reacted more readily with 2-hydroxybutyrate than did the slower migrating LDH-4 and LDH-5 isoenzymes. LDH-1ex showed no activity when lactate was omitted from the substrate solution or replaced by ethanol.


Sign in / Sign up

Export Citation Format

Share Document