Partial characterization of an abnormal lactate dehydrogenase isoenzyme, LDH-1ex, in serum from a patient with hepatocellular carcinoma.

1989 ◽  
Vol 35 (5) ◽  
pp. 844-848
Author(s):  
D L Kalpaxis ◽  
E E Giannoulaki

Abstract Serum from a patient with hepatocellular carcinoma contained an abnormal isoenzyme of lactate dehydrogenase (LDH; EC 1.1.1.27), LDH-1ex, that on electrophoresis on 10-g/L agarose gel migrated anodally to the LDH-1 band. This isoenzyme was partly purified by ultrafiltration and preparative electrophoresis. Gel chromatography and sodium dodecyl sulfate/polyacrylamide gel electrophoresis studies of the resulting LDH-1ex preparation suggested that this isoenzyme is probably a tetramer made up of four single polypeptide chains (monomers), each having a molecular mass of about 32,000 Da. LDH-1ex was heat stable and reacted more readily with 2-hydroxybutyrate than did the slower migrating LDH-4 and LDH-5 isoenzymes. LDH-1ex showed no activity when lactate was omitted from the substrate solution or replaced by ethanol.

1973 ◽  
Vol 51 (9) ◽  
pp. 1275-1280 ◽  
Author(s):  
B. W. Griffiths

The analysis of antigen E of ragweed pollen by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS) resulted in the demonstration of two subunits of molecular weights of about 20 000 and 14 500. These results confirm earlier studies on antigen E by gel chromatography that demonstrated a two-polypeptide subunit composition. Treatment of antigen E with 1% SDS (in the absence of reducing agent) resulted in the dissociation of the two polypeptide chains, which indicates that the bonds bridging the subunits are non-covalent in nature.


1982 ◽  
Vol 47 (01) ◽  
pp. 014-018 ◽  
Author(s):  
H Sumi ◽  
N Toki ◽  
S Takasugi ◽  
S Maehara ◽  
M Maruyama ◽  
...  

SummaryPapain treatment of human urinary trypsin inhibitor (UTI67; mol. wt. 43,000 by SDS-polyacrylamide gel electrophoresis, specific activity 1,897 U/mg protein) produced four new protease inhibitors, which were highly purified by gel chromatography on Sephadex G-100 and isoelectric focusing. The purified inhibitors (UTI26, UTI9-I, UTI9-II, and UTI9-III) were shown to be homogeneous by polyacrylamide disc gel electrophoresis, and had apparent molecular weights of 26,000, 9,000, 9,000, and 9,800, respectively, by sodium dodecyl sulfate gel electrophoresis. During enzymatic degradation of UTI67, the amino acid compositions changed to more basic, and the isoelectric point increased from pH 2.0 (UTI67) to pHs 4.4, 5.2, 6.6, and 8.3 (UTI26, UTI9-I, UTI9-II, and UTI9-III), respectively. Both the parent and degraded inhibitors had anti-plasmin activity as well as antitrypsin and anti-chymotrypsin activities. Much higher anti-plasmin/anti-trypsin and anti-plasmin/anti-chymotrypsin activities were observed in the degraded inhibitors than in the parent UTI67. They competitively inhibited human plasmin with Ki values of 1.13 X 10-7 - 2.12 X 10-6 M (H-D-Val-Leu-Lys-pNA substrate). The reactions were very fast and the active site of the inhibitors to plasmin was thought to be different from that to trypsin or chymotrypsin.


1977 ◽  
Vol 55 (9) ◽  
pp. 958-964 ◽  
Author(s):  
M. P. C. Ip ◽  
R. J. Thibert ◽  
D. E. Schmidt Jr.

Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and α-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of α-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.


1998 ◽  
Vol 64 (4) ◽  
pp. 1298-1302 ◽  
Author(s):  
Marguerite Dols ◽  
M. Remaud-Simeon ◽  
R. M. Willemot ◽  
M. Vignon ◽  
P. Monsan

ABSTRACT When grown in glucose or fructose medium in the absence of sucrose,Leuconostoc mesenteroides NRRL B-1299 produces two distinct extracellular dextransucrases named glucose glucosyltransferase (GGT) and fructose glucosyltransferase (FGT). The production level of GGT and FGT is 10 to 20 times lower than that of the extracellular dextransucrase sucrose glucosyltransferase (SGT) produced on sucrose medium (traditional culture conditions). GGT and FGT were concentrated by ultrafiltration before sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Their molecular masses were 183 and 186 kDa, respectively, differing from the 195 kDa of SGT. The structural analysis of the dextran produced from sucrose and of the oligosaccharides synthesized by acceptor reaction in the presence of maltose showed that GGT and FGT are two different enzymes not previously described for this strain. The polymer synthesized by GGT contains 30% α(1→2) linkages, while FGT catalyzes the synthesis of a linear dextran only composed of α(1→6) linkages.


1984 ◽  
Vol 62 (11) ◽  
pp. 1181-1189 ◽  
Author(s):  
S. F. Koval ◽  
R. G. E. Murray

The methods used for the isolation of regularly structured (RS) surface array proteins of a range of prokaryotes are described. Most RS proteins can be selectively solubilized from envelope preparations with low concentrations of urea or guanidine hydrochloride. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis analysis of the protein extracts shows that most RS arrays are composed of a single polypeptide that may contain carbohydrate. The molecular weight of the proteins varies from 41 000 to 200 000. Possible reasons for the presence of more than one polypeptide in RS protein preparations are discussed, as well as the evidence for proteolytic degradation of some RS proteins during isolation. Structural features of the RS proteins are described and the importance of protein conformation to assembly of the arrays is indicated.


1969 ◽  
Vol 47 (10) ◽  
pp. 989-991 ◽  
Author(s):  
D. P. Blattler ◽  
George Gorin

Urease, m.w. 480 000, treated with an excess of sodium dodecyl sulfate is converted to a product of greatly increased mobility in polyacrylamide gel electrophoresis. We estimate its weight to be about 80 000. Treatment with excess thiol and detergent yielded the same product as detergent alone, indicating that the subunit or subunits do not contain polypeptide chains linked by disulfide bonds.


Sign in / Sign up

Export Citation Format

Share Document