scholarly journals The effects of benzopyrene and safrole on biphenyl 2-hydroxylase and other drug-metabolizing enzymes

1976 ◽  
Vol 154 (3) ◽  
pp. 773-780 ◽  
Author(s):  
F J. McPherson ◽  
J W. Bridges ◽  
D V. Parke

A study was made of the nature and specificity of the increase in biphenyl 2-hydroxylase activity after preincubation of liver microsomal preparations with various carcinogens in vitro. This enhancement of enzyme activity in vitro was investigated in mouse, hamster and rat, and although the rat appears to be atypical in the variation of the pattern of 2- and 4-hydroxylation with age, similar enhancements were detectable in each species examined. An increase in biphenyl 2-hydroxylase activity was apparent 2h after intraperitoneal administration of safrole or benzopyrene to mature Wistar albino rats and appeared to be similar in nature to that observed after preincubation of liver microsomal preparations with the same chemical in vitro. Investigation of other drug-metabolizing enzyme systems suggests that the enhancing effects of carcinogens in vitro are specific for biphenyl 2-hydroxylase. No correlation between the enhancement of biphenyl 2-hydroxylase and inhibtion of biphenyl 4-hydroxylase was apparent.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moe Ichikawa ◽  
Hiroki Akamine ◽  
Michika Murata ◽  
Sumito Ito ◽  
Kazuo Takayama ◽  
...  

AbstractCaco-2 cells are widely used as an in vitro intestinal epithelial cell model because they can form a monolayer and predict drug absorption with high accuracy. However, Caco-2 cells hardly express cytochrome P450 (CYP), a drug-metabolizing enzyme. It is known that CYP3A4 is the dominant drug-metabolizing enzyme in human small intestine. In this study, we generated CYP3A4-expressing Caco-2 (CYP3A4-Caco-2) cells and attempted to establish a model that can simultaneously evaluate drug absorption and metabolism. CYP3A4-Caco-2 cells were generated by piggyBac transposon vectors. A tetracycline-controllable CYP3A4 expression cassette (tet-on system) was stably transduced into Caco-2 cells, thus regulating the levels of CYP3A4 expression depending on the doxycycline concentration. The CYP3A4 expression levels in CYP3A4-Caco-2 cells cultured in the presence of doxycycline were similar to or higher than those of adult small intestine. The CYP3A4-Caco-2 cells had enough ability to metabolize midazolam, a substrate of CYP3A4. CYP3A4 overexpression had no negative effects on cell proliferation, barrier function, and P-glycoprotein activity in Caco-2 cells. Thus, we succeeded in establishing Caco-2 cells with CYP3A4 metabolizing activity comparable to in vivo human intestinal tissue. This cell line would be useful in pharmaceutical studies as a model that can simultaneously evaluate drug absorption and metabolism.


1971 ◽  
Vol 49 (3) ◽  
pp. 161-166 ◽  
Author(s):  
Jules Brodeur ◽  
Claude Marchand

Splenectomy was performed in adult female rats in order to investigate the influence of removal of the spleen on liver microsomal enzymes and cytochrome P-450 in vitro, as well as on the pharmacological activity of certain drugs in intact animals. Splenectomy significantly decreases the amount of cytochrome P-450 at 1 and 4 days after the operation, but not at 7 days. The activity of the enzymes catalyzing the metabolism of parathion, p-nitroanisole, and zoxazolamine is also decreased 4 days after splenectomy, whereas that of the enzymes involved in the metabolism of hexobarbital is unchanged. The maximal induction by phenobarbital of the enzymatic activities catalyzing the metabolism of parathion, p-nitroanisole, and zoxazolamine is prevented by splenectomy. Splenectomy exerts very little effect on plasma levels of hexobarbital and hexobarbital sleeping time; however, in both control and phenobarbital-pretreated rats, splenectomy results in a marked increase in the duration of zoxazolamine paralysis. These results indicate that splenectomy exerts inhibitory effects on certain liver microsomal enzymes, and provide some indirect evidence in support of the view that the hepatic blood supply is important for maintaining normal levels of drug-metabolizing enzyme activity in the liver.


1970 ◽  
Vol 117 (3) ◽  
pp. 491-498 ◽  
Author(s):  
H. H. Miller ◽  
R. K. Johnson ◽  
J. D. Donahue ◽  
W. R. Jondorf

1. Pretreatment of female rats with (−)-emetine or (±)-2,3-dehydroemetine (at 18μmol/kg body wt. for 24h) prolongs the hexobarbital-induced sleeping-time of the treated animals. 2. This effect is not observed on pretreating animals with other compounds closely related to (−)-emetine, such as (−)-isoemetine or (+)-O-methylpsychotrine. 3. Liver microsomal drug-metabolizing enzyme activity in vitro as measured by N-demethylation of aminopyrine and azo-reduction of Neoprontosil is inhibited in rats pretreated with (−)-emetine or with (±)-2,3-dehydroemetine. 4. These inhibitory effects on drug metabolism in vitro are not observed in corresponding experiments involving pretreatment of rats with (−)-isoemetine or (+)-O-methylpsychotrine. 5. Co-administration of emetine or 2,3-dehydroemetine and sodium phenobarbital or 1,1-dichloro-2-o-chlorophenyl-2-p-chlorophenylethane to rats abolishes or greatly diminishes the stimulation of drug-metabolizing enzyme activity in vitro usually obtained by the administration of phenobarbital or 1,1-dichloro-2-o-chlorophenyl-2-p-chlorophenylethane alone. 6. Further, in rats pretreated with sodium phenobarbital and subsequently injected with emetine or 2,3-dehydroemetine the pre-stimulated drug-metabolizing enzyme activity in vitro is diminished. 7. The inhibitory effects on drug-metabolizing enzyme activity after pretreatment with (−)-emetine or (±)-2,3-dehydroemetine do not appear to be related to NADPH generation.


1966 ◽  
Vol 51 (2) ◽  
pp. 213-218 ◽  
Author(s):  
Mont R. Juchau ◽  
Theodore E. Gram ◽  
James R. Fouts

Sign in / Sign up

Export Citation Format

Share Document