scholarly journals Inhibition by calcium ions of adenosine cyclic monophosphate formation in sealed pigeon erythrocyte ‘ghosts’. A study using the photoprotein obelin

1978 ◽  
Vol 176 (1) ◽  
pp. 53-66 ◽  
Author(s):  
A K Campbell ◽  
R L Dormer

1. Sealed pigeon erythrocyte ‘ghosts’ were prepared containing ATP and the Ca2+-activated photoprotein obelin to investigate the relationship cyclic AMP formation and internal free Ca2+. 2. The ‘ghosts’ were characterized by (a) morphology (optical and electron microscopy), (b) composition (haemoglobin, K+, Na+, Mg2+, ATP, obelin), (c) permeability to Ca2+, assessed by obelin luminescence and (d) hormone sensitivity (the effect of beta-adrenergic agonists and antagonists on cyclic AMP formation). 3. The effect of osmolarity at haemolysis and ATP at resealing on these parameters was investigated. 4. Sealed ‘ghosts’, containing approx. 2% of original haemoglobin, 150mM-K+, 0.5MM-ATP, 10(3)–10(4) obelin luminescence counts/10(6) ‘ghosts’, which were relatively impermeable to Ca2+ and in which cyclic AMP formation was stimulated by beta-adrenergic agonists over a concentration range similar to that for intact cells, could be prepared after haemolysis in 6mM-NaCl3mM-MgCl2/50mM-Tes, pH7, and resealing for 30min at 37 degrees C in the presence of ATP and 150mM-KCl. 5. The initial rate of adrenaline-stimulated cyclic AMP formation in these ‘ghosts’ was 30–50% of that in intact cells and was inhibited by the addition of extracellular Ca2+. Addition of Ca2+ to the ‘ghosts’ resulted in a stimulation of obelin luminescence, indicating an increase in internal free Ca2+ under these conditions. 6. The ionophore A23187 increased the rate of obelin luminescence in the ‘ghosts’ and also inhibited the adrenaline-stimulated increase in cyclic AMP. 7. The effect of ionophore A23187 on obelin luminescence and on cyclic AMP formation in the ‘ghosts’ was markedly decreased by sealing EGTA inside the ‘ghosts’. 8. It was concluded that cyclic AMP formation inside sealed pigeon erythrocyte ‘ghosts’ could be inhibited by more than 50% by free Ca2+ concentrations in the range 1–10 micrometer.

2005 ◽  
Vol 182 (1) ◽  
pp. 104-115 ◽  
Author(s):  
Han-Ting Zhang ◽  
Ying Huang ◽  
Kathleen Mishler ◽  
Sandra C. Roerig ◽  
James M. O'Donnell

1982 ◽  
Vol 242 (5) ◽  
pp. R582-R590 ◽  
Author(s):  
P. E. Hillman ◽  
N. R. Scott ◽  
A. van Tienhoven

Blood exits the foot of the domestic chicken via two major venous routes: a counter-current network surrounding the major incoming artery and a large collateral vein. Between these two routes are numerous large collateral vein. Between these two routes are numerous anastomotic veins. Both venous routes drain capillaries and arteriovenous anastomoses (AVAs). Blood flow through the foot was measured on unanesthetized hens. Flow varies with ambient temperature: 0.2 ml/min at 5 degrees C, 2.2 ml/min at thermoneutrality, and 5.4 ml/min at 36 degrees C; the AVAs contribute 8, 26, and 63% to this flow, respectively. Flow through capillaries is reduced by alpha-adrenergic agonists and is increased by beta-adrenergic agonists. Blocking nerve conduction to the foot at thermoneutrality releases alpha-adrenergic tone and increase AVA flow. Faradic stimulation of foot nerves after adrenergic blockage increases AVA flow, but not capillary flow, suggesting active vasodilation of the AVAs. Such AVA vasodilation normally occurs during body heating, since AVA flow decreases after denervation. Dopaminergic or beta-adrenergic nerves are not involved in active vasodilatation, however, purinergic nerves may play a role. Thus AVAs have a functional dual innervation.


1983 ◽  
Vol 210 (2) ◽  
pp. 463-472 ◽  
Author(s):  
T P Goldstone ◽  
R J Duddridge ◽  
M Crompton

The Na+-induced efflux of Ca2+ from liver mitochondria was activated by tissue pretreatment with 1 microM-adrenaline, 1 microM-isoprenaline, 10 nM-glucagon and 100 microM-cyclic AMP when 10 mM-lactate plus 1 mM-pyruvate were present in the perfusion medium. Infusion of the alpha 1-adrenergic agonist, phenylephrine (10 microM), was ineffective. The activation induced by the beta-adrenergic agonist, isoprenaline, was maximal after infusion of agonist for 2 min. The isoprenaline-induced activation was very marked (120-220%), with about 7 nmol of intramitochondrial Ca2+/mg of protein, but was not evident with greater than 15 nmol of Ca2+/mg. Ca2+ efflux in the absence of Na+ and in the presence of the Ca2+ ionophore A23187 was not affected by isoprenaline pretreatment over the range 6-23 nmol of internal Ca2+/mg. With 10 mM-lactate plus 1 mM-pyruvate in the perfusion medium, glucagon and isoprenaline infusion increased tissue cyclic AMP content about 8-fold and 3-fold respectively. With 10 mM-pyruvate alone, neither glucagon nor isoprenaline caused a significant increase in cyclic AMP. Omission of lactate also abolished the ability of glucagon, but not of isoprenaline, to activate the Na+-induced efflux of Ca2+. The data indicate that cyclic AMP may mediate the activation caused by glucagon, but provide no evidence that cyclic AMP is an obligatory link in the beta-adrenergic-induced activation.


1984 ◽  
Vol 247 (5) ◽  
pp. C441-C449 ◽  
Author(s):  
C. M. Liedtke ◽  
B. Tandler

Surface tracheal epithelial cells (tracheocytes) from rabbit were isolated by treating intact tissue with chelators and proteolytic enzymes. The cells were viable as assessed by the following criteria: fluorescent viability staining, sequestration of lactate dehydrogenase, and maintenance of constant ATP levels. Radiolabeled Na+ was transported into cells with a rate constant of 0.06/min and an initial velocity of 1.6 nmol X 10(6) cells-1 X min-1 X beta-adrenergic agonists increased adenosine 3',5'-cyclic monophosphate (cAMP) levels in a time- and dose-dependent manner. The beta-adrenergic effects were potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and blocked by propranolol. The tracheocytes retained the capacity to respond to beta-adrenergic agonists for at least 90 min after isolation. Two major cAMP binding proteins of apparent molecular weights of 50,000 and 54,000 were identified in tracheocytes with the photoaffinity label 8-N3-[32P]cAMP. Agents that increased cAMP levels in intact cells and unlabelled cAMP added to homogenates of cells that were not exposed to drugs decreased photoaffinity labeling. The two proteins correspond in electrophoretic mobility to the regulatory subunits of cAMP-dependent protein kinases I and II, respectively. The results demonstrate that the beta-adrenergic receptors and cAMP binding proteins identified in rabbit tracheal mucosa submucosa are present on tracheocytes, suggesting a role for these receptors in the regulation of tracheocyte physiological events.


1987 ◽  
Vol 246 (2) ◽  
pp. 331-336 ◽  
Author(s):  
J A García-Sáinz ◽  
B Michel

Hepatocytes from hypothyroid rats have a marked beta-adrenergic responsiveness. Preincubation of these hepatocytes with isoprenaline induced a time-dependent and concentration-dependent desensitization of the beta-adrenergic responsiveness without altering that to glucagon (homologous desensitization). The desensitization was evidenced both in the cyclic AMP accumulation and in the stimulation of ureagenesis induced by the beta-adrenergic agonists. Under the same conditions, preincubation with glucagon induced no desensitization. Propranolol was also unable to induce desensitization, but blocked that induced by isoprenaline. Pertussis-toxin treatment did not alter the homologous beta-adrenergic desensitization induced by isoprenaline.


1976 ◽  
Vol 158 (2) ◽  
pp. 211-221 ◽  
Author(s):  
A K Campbell ◽  
K Siddle

1. The bivalent cation ionophore A23187 was used to increase the intracellular concentration of Ca2+ in pigeon erythrocytes to investigate whether the increase in cyclic AMP content caused by adrenaline might be influenced by a change in intracellular Ca2+ in intact cells. 2. Incubation of cells with adrenaline, in the concentration range 0.55--55 muM, resulted in an increase in the concentration of cyclic AMP over a period of 60 min. The effect of adrenaline was inhibited by more than 90% with ionophore A23187 (1.9 muM) in the presence of 1 mM-Ca2+. This inhibition could be decreased by decreasing either the concentration of the ionophore or the concentration of extracellular Ca2+, and was independent of the concentration of adrenaline. 3. The effect of ionophore A23187 depended on the time of incubation. Time-course studies showed that maximum inhibition by ionophore A23187 was only observed when the cells were incubated with the ionophore for at least 15 min before the addition of adrenaline. 4. The inhibition by ionophore A23187 depended on the concentration of extracellular Ca2+. In the absence of Mg2+, ionophore A23187 (1.9 muM) inhibited the effect of adrenaline by approx. 30% without added Ca2+, by approx. 66% with 10 muM-Ca2+ and by more than 90% with concentrations of added Ca2+ greater than 30 muM. However, even in the presence of EGTA [ethanedioxybis(ethylamine)tetra-acetate](0.1--10 mM), ionophore A23187 caused an inhibition of the cyclic AMP response of at least 30%, which may have been due to a decrease in cell Mg2+ concentration. 5. The addition of EGTA after incubation of cells with ionophore A23187 resulted in a partial reversal of the inhibition of the effect of adrenaline. 6. Inclusion of Mg2+ (2 mM) in the incubation medium antagonized the inhibitory action of ionophore A23187. This effect was most marked when the ionophore A23187 was added to medium containing Mg2+ before the addition of the cells. 7. The cellular content of Mg2+ was decreased by approx. 50% after 20 min incubation with ionophore A23187 (1.9 muM) in the presence of Ca2+ (1 mM) but no Mg2+. When Mg2+ (2 mM) was also present in the medium, ionophore A23187 caused an increase of approx. 80% in cell Mg2+ content. Ionophore A23187 had no significant effect on cell K+ content. 8. Ionophore A23187 caused a decrease in cell ATP content under some conditions. Since effects on cyclic AMP content could also be shown when ATP was not significanlty lowered, it appeared that a decrease in ATP in the cells could not explain the effect of ionophore A23187 on cyclic AMP. 9. Ionophore A23187 (1.9 muM), with 1 mM-Ca2+, did not enhance cyclic AMP degradation in intact cells, suggesting that the effect of ionophore A23187 on cyclic AMP content was mediated through an inhibition of adenylate cyclase rather than a stimulation of cyclic AMP phosphodiesterase. 10. It was concluded that in intact pigeon erythrocytes adenylate cyclase may be inhibited by intracellular concentrations of Ca2+ in the range 1-10 muM.


Sign in / Sign up

Export Citation Format

Share Document