therapeutic administration
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 43)

H-INDEX

27
(FIVE YEARS 5)

2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Sandra Salazar-Aguilar ◽  
Lucero del Mar Ruiz-Posadas ◽  
Jorge Cadena-Iñiguez ◽  
Marcos Soto-Hernández ◽  
Edelmiro Santiago-Osorio ◽  
...  

Microencapsulation is a technique used in pharmaceuticals as an administration vehicle. Encapsulating secondary metabolites for therapeutic purposes has been promoted recently. Microencapsulation based on chitosan was developed for the methanol extract of cv. Perla negra (S. edule (Jacq.) Sw.) (Cucurbitaceae) fruits to evaluate its viability as an administration vehicle and to assess the possible negative interaction between the extract and chitosan. Microencapsulation was performed by coacervation, implementing a method with constant sonication. The microparticles obtained were registered by means of Scanning Electron Microscopy. The presence of the bioactive in aqueous medium was recorded for release tests, measuring with spectrophotometry its concentration as a function of time. The assessment of the biological effect of the microencapsulated extract was done on the HeLa cell line and control cells (lymphocytes). Microspheres with an average size of 20 µm and a loading capacity of 98% were obtained. The highest concentration of released extract was 24 µg mL−1 at 23 h. The mainly chitosan-based microspheres did not affect the antiproliferative activity of the extract of cv. Perla negra and proved to be a potential vehicle for its therapeutic administration. The empty microspheres made with chitosan also showed to have an antiproliferative effect, and those loaded with extract showed cellular inhibition (statistical IC50) of 8 µg mL−1 without affecting the lymphocytes. Chitosan does not interfere with the biological activity of the metabolites incorporated into the microspheres since they retain their inhibitory activity on proliferation in tumor cells, thus constituting a potential vehicle for the therapeutic administration of fruit extract.


2021 ◽  
Vol 135 (23) ◽  
pp. 2619-2623
Author(s):  
Natalia M. Noto ◽  
Yazmin M. Restrepo ◽  
Robert C. Speth

Abstract It is well-established that Ang-(1-7) counteracts the effects of Ang II in the periphery, while stimulating vasopressin release and mimicking the activity of Ang II in the brain, through interactions with various receptors. The rapid metabolic inactivation of Ang-(1-7) has proven to be a limitation to therapeutic administration of the peptide. To circumvent this problem, Alves et al. (Clinical Science (2021) 135(18), https://doi.org/10.1042/CS20210599) developed a new transgenic rat model that overexpresses an Ang-(1-7)-producing fusion protein. In this commentary, we discuss potential concerns with this model while also highlighting advances that can ensue from this significant technical feat.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongpeng Zhang ◽  
Hao Wang ◽  
Yong Xia ◽  
Nianmin Qi

Pulmonary fibrosis (PF) is a kind of lung disease characterized by scar formation and inflammation damage. Mesenchymal stem cells (MSCs) are considered a promising therapy because of multidirectional differentiation and immune regulation. Our research was designed for identifying the preventative defensive ability and therapeutic effect of human umbilical cord mesenchymal stem cells (HUCMSCs). HUCMSCs were administered before or after bleomycin injection in different groups of C57BL/6 mice. We calculated the survival time of mice, the lung coefficients, contents of hydroxyproline, and pathological scores. The expression levels of HIF-1α (hypoxia-inducible factor-1α), α-SMA (α-smooth muscle actin), γH2AFX (γH2A histone family, member X), ZO-1 (zonula occludens-1), ROS (reactive oxygen species) content, and proliferation ability of A549 cells were detected after treatment with bleomycin and HUCMSCs conditioned medium (HUCMSCs-CM), respectively, or together in vitro. In addition, we examined the secretome of HUCMSCs in regular and inflammatory stimulation conditions. Our results demonstrated that prophylactic HUCMSC administration before bleomycin-induced modeling process could significantly meliorate damage to pulmonary fibrosis. After the deletion of HIF-1α, damage markers in A549 cells were significantly reduced in therapeutic administration condition. However, it was the opposite in prophylactic administration condition. The results confirmed that HUCMSCs had available preventive effect on bleomycin-induced pulmonary fibrosis in vivo and in vitro. However, it may have a negative effect in therapeutic administration condition because of the dual effect of HIF-1α.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen Shi Lee ◽  
Arnold Reynaldi ◽  
Thakshila Amarasena ◽  
Miles P. Davenport ◽  
Matthew S. Parsons ◽  
...  

Broadly neutralising antibodies (bNAbs) may play an important role in future strategies for HIV control. The development of anti-drug antibody (ADA) responses can reduce the efficacy of passively transferred bNAbs but the impact of ADA is imperfectly understood. We previously showed that therapeutic administration of the anti-HIV bNAb PGT121 (either WT or LALA version) controlled viraemia in pigtailed macaques with ongoing SHIV infection. We now report on 23 macaques that had multiple treatments with PGT121. We found that an increasing number of intravenous doses of PGT121 or human IgG1 isotype control antibodies (2-4 doses) results in anti-PGT121 ADA induction and low plasma concentrations of PGT121. ADA was associated with poor or absent suppression of SHIV viremia. Notably, ADA within macaque plasma recognised another human bNAb 10E8 but did not bind to the variable domains of PGT121, suggesting that ADA were primarily directed against the constant regions of the human antibodies. These findings have implications for the development of preclinical studies examining multiple infusions of human bNAbs.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2991
Author(s):  
Martyna Cieślik ◽  
Natalia Bagińska ◽  
Andrzej Górski ◽  
Ewa Jończyk-Matysiak

Studies described so far suggest that human β-defensin 2 is an important protein of innate immune response which provides protection for the human organism against invading pathogens of bacterial, viral, fungal, as well as parasitical origin. Its pivotal role in enhancing immunity was proved in infants. It may also be considered a marker of inflammation. Its therapeutic administration has been suggested for maintenance of the balance of systemic homeostasis based on the appropriate composition of the microbiota. It has been suggested that it may be an important therapeutic tool for modulating the response of the immune system in many inflammatory diseases, offering new treatment modalities. For this reason, its properties and role in the human body discussed in this review should be studied in more detail.


2021 ◽  
pp. 1-10
Author(s):  
Ian Masse ◽  
Luc Moquin ◽  
Caroline Bouchard ◽  
Alain Gratton ◽  
Louis De Beaumont

OBJECTIVE Alterations in amino acid concentrations are a major contributor to the persistent neurological and behavioral effects induced by concussions and mild traumatic brain injuries (TBIs). Glutamate, the most abundant excitatory amino acid in the CNS, has a major role in the pathophysiological process of concussion. The indiscriminate liberation of glutamate immediately after a concussion triggers an excitotoxic response that leads to cell death, neuronal damage, and the dysfunction of surviving neurons, largely by overactivation of N-methyl-d-aspartate (NMDA) glutamatergic receptors. The aim of the present study was to investigate the efficacy of prophylactic versus therapeutic administration of MK-801, a promising NMDA receptor antagonist, on the acute changes in amino acid extracellular concentrations involved in excitotoxicity resulting from a concussive trauma. METHODS The immediate neurochemical response to a concussion cannot be characterized in humans. Therefore, the authors used their previously validated combination of a weight-drop concussion rat model and in vivo cerebral microdialysis. The microdialysis probe was inserted inside the hippocampus and left inserted at impact to allow uninterrupted sampling of amino acids of interest immediately after concussion. The primary outcome included amino acid concentrations and the secondary outcome included righting time. Samples were taken in 10-minute increments for 60 minutes before, during, and 60 minutes after impact, and analyzed for glutamate, gamma-aminobutyric acid, taurine, glycine, glutamine, and serine using high-performance liquid chromatography. Righting time was acquired as a neurological restoration indicator. Physiological saline or 10 mg/kg MK-801 was administrated intraperitoneally 60 minutes before or immediately following induction of sham injury or concussion. RESULTS Following induction of concussion, glutamate, taurine, and glycine levels as well as righting times in cases from the MK-801 treatment group were comparable to those of vehicle-treated animals. In contrast, righting times and amino acid concentrations observed within the first 10 minutes after induction of concussion in cases assigned to the MK-801 prophylaxis group were comparable to those of sham-injured animals. CONCLUSIONS These results suggest that presynaptic actions and peak availability of MK-801 following prophylactic administration significantly inhibit the immediate and indiscriminate release of glutamate, taurine, and glycine in extracellular fluid after a concussion.


2021 ◽  
Author(s):  
Paresh Patel ◽  
Shilpa Siddappa ◽  
Balachandran Ravindran ◽  
Taslimarif Saiyed

AbstractNematodes characteristically modulate effector immune responses by synthesizing and releasing both anti-inflammatory as well as proinflammatory molecules in infected hosts. Pre-clinical studies suggest that immuno-modulatory molecules and synthetic small molecules that mimic parasite products could have therapeutic value to ameliorate tissue damage found in inflammatory diseases. We report here identification of a glycoprotein from filarial parasite, a homologue of mammalian Heat Shock Protein 70 with immunostimulatory attributes. The purified native glycoprotein designated as FHSP70 and its recombinant protein moiety, WFL were found to be TLR2 and TLR4 agonists in vitro in human myeloid cells and induce systemic inflammatory cytokines in vivo. Cecal ligation and puncture (CLP) performed in mice which leads to onset of poly microbial sepsis and mortality could be treated by therapeutic administration of a single dose of FHSP70, along with antibiotics, suggesting its potential as a immunotherapeutic adjuvant for clinical management of Sepsis. Intra-nasal administration of WFL to mice followed by challenge with virulent human Influenza-A virus resulted in decreased viral growth as well as improved survival. The protective effect was demonstrable by both prophylactic as well as therapeutic intranasal administration of WFL. Further, therapeutic administration of WFL by intraperitoneal route 5 days post viral challenge also resulted in significant decrease in viral load in the respiratory tract.One sentence SummarySystemic administration of a Filarial HSP70 acts as an adjuvant therapy, through immuno-modulation, for improved survival against murine Polymicrobial Sepsis and Viral Infection while its intra nasal administration protects mice prophylactically as well as therapeutically against H1N1 Influenza viral challenge.


2021 ◽  
Vol 12 ◽  
Author(s):  
James Alexander Pearson ◽  
Alexander Christopher Voisey ◽  
Kathrine Boest-Bjerg ◽  
F. Susan Wong ◽  
Li Wen

Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.


Author(s):  
Mei-yue Song ◽  
Jia-xin Wang ◽  
You-liang Sun ◽  
Zhi-fa Han ◽  
Yi-tian Zhou ◽  
...  

AbstractSilicosis caused by inhalation of silica particles leads to more than ten thousand new occupational exposure-related deaths yearly. Exacerbating this issue, there are currently few drugs reported to effectively treat silicosis. Tetrandrine is the only drug approved for silicosis treatment in China, and despite more than decades of use, its efficacy and mechanisms of action remain largely unknown. Here, in this study, we established silicosis mouse models to investigate the effectiveness of tetrandrine of early and late therapeutic administration. To this end, we used multiple cardiopulmonary function test, as well as markers for inflammation and fibrosis. Moreover, using single cell RNA sequencing and transcriptomics of lung tissue and quantitative microarray analysis of serum from silicosis and control mice, our results provide a novel description of the target pathways for tetrandrine. Specifically, we found that tetrandrine attenuated silicosis by inhibiting both the canonical and non-canonical NLRP3 inflammasome pathways in lung macrophages. Taken together, our work showed that tetrandrine yielded promising results against silicosis-associated inflammation and fibrosis and further lied the groundwork for understanding its molecular targets. Our results also facilitated the wider adoption and development of tetrandirne, potentially accelerating a globally accepted therapeutic strategy for silicosis.


Sign in / Sign up

Export Citation Format

Share Document