scholarly journals The prosthetic group of methanol dehydrogenase. Purification and some of its properties

1980 ◽  
Vol 187 (1) ◽  
pp. 221-226 ◽  
Author(s):  
J A Duine ◽  
J Frank

Methanol dehydrogenases isolated from bacteria belonging to different classes of methylotrophs contain the same prosthetic group. A procedure for its purification from whole cells is given. The reduced and oxidized form of the enzyme from Hyphomicrobium X and those of the isolated group are compared and it is concluded that the latter indeed functions in the enzyme. Further evidence is presented that the prosthetic group is not a pterine or lumazine derivative, but a water-soluble nitrogen-containing quinone.

2007 ◽  
Vol 35 (2) ◽  
pp. 597-600
Author(s):  
Ida Kincses ◽  
Tibor Filep ◽  
Péter Nagy ◽  
Andrea Kovács

Author(s):  
Rameez Jabeer Khan ◽  
Rajat Kumar Jha ◽  
Gizachew Muluneh Amera ◽  
Jayaraman Muthukumaran ◽  
Rashmi Prabha Singh ◽  
...  

Introduction: Lactoperoxidase (LPO) is a member of mammalian heme peroxidase family and is an enzyme of innate immune system. It possesses a covalently linked heme prosthetic group (a derivative of protoporphyrin IX) in its active site. LPO catalyzes the oxidation of halides and pseudohalides in the presence of hydrogen peroxide (H2O2) and shows a broad range of antimicrobial activity. Methods: In this study, we have used two pharmaceutically important drug molecules, namely dapsone and propofol, which are earlier reported as potent inhibitors of LPO. Whereas the stereochemistry and mode of binding of dapsone and propofol to LPO is still not known because of the lack of the crystal structure of LPO with these two drugs. In order to fill this gap, we utilized molecular docking and molecular dynamics (MD) simulation studies of LPO in native and complex forms with dapsone and propofol. Results: From the docking results, the estimated binding free energy (ΔG) of -9.25 kcal/mol (Ki = 0.16 μM) and -7.05 kcal/mol (Ki = 6.79 μM) was observed for dapsone, and propofol, respectively. The standard error of Auto Dock program is 2.5 kcal/mol; therefore, molecular docking results alone were inconclusive. Conclusion: To further validate the docking results, we performed MD simulation on unbound, and two drugs bounded LPO structures. Interestingly, MD simulations results explained that the structural stability of LPO-Propofol complex was higher than LPO-Dapsone complex. The results obtained from this study establish the mode of binding and interaction pattern of the dapsone and propofol to LPO as inhibitors.


Foods ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 125 ◽  
Author(s):  
Oya Berkay Karaca ◽  
Mehmet Güven

Effects of proteolytic (Neutrase, Bacillus subtilis-originate, 0.20 (P1) and 0.40 g 100 L−1 (P2)) and lipolytic (Piccantase A, Mucor miehei-originated, 0.05 (L1) and 0.10 g 100 L−1 (L2)) enzyme supplementations to cheese milk on lipolysis and proteolysis characteristics of 90-day ripened cheese samples were investigated in this study. While enzyme supplementation did not have significant effects on titratable acidity, fat and protease-peptone nitrogen ratios of cheese samples, dry matter, salt, protein, water soluble nitrogen, 12% trichloroacetic acid soluble nitrogen ratio (TCA-SN), 5% phosphotungstic acid soluble nitrogen (PTA-SN), casein nitrogen ratios, penetrometer value, total free fatty acids (TFFA) and total free amino acids (TFAA) were significantly influenced by enzyme supplementations. Individual free amino acids (15 of them) were also determined. Free amino acid contents of enzyme-supplemented cheeses were higher than the control cheese and the values increased in all cheese samples with the progress of ripening (p < 0.05). The highest amino acids in all periods of ripening were identified as glutamic acid, lysine, proline and aspartic acid. The major (Ca, P, Na, K, Mg) and minor (Zn, Fe, Cu, Mn) mineral levels of cheeses decreased with the progress of ripening and the effects of enzyme supplementations on these attributes (except for magnesium and manganese) were found to be significant (p < 0.01). As to conclude, enzyme supplementations increased proteolysis and lipolysis and accelerated ripening and thus reduced ripening durations. Especially the enzyme ratios in P1 and L1 cheeses were found to be suitable for reducing the ripening period in White cheese without any adverse effects.


2021 ◽  
Vol 3 (2) ◽  
pp. 156-162
Author(s):  
T. A. Adegbola ◽  
A. U. Mba ◽  
F. O. Olubajo

FOUR fistulated and four intact West African dwarf Sheep, maintained on hay and concentrate supplements were used for a study of metabolic faecal nitrogen (MEN) endogenous urinary nitrogen (EUN). The composition of the faecal losses was examined. The values obtained enabled calculation of nitrogen requirement of the sheep for maintenance, as well as the value of the experimental rations in the nutrition of the sheep. Values of MFN obtained by two methods were 3.31 and 3.10 g/kg Dry matter (DM) intake. Endogenous urinary nitrogen value was 0.024 g/day per metabolic weight (Wkg0.75.) Analysis of the faeces of the sheep showed that 21.1% of faecal nitrogen (N) were present as microbial and endogenous nitrogen (MEN) and 17.3% was present as water-soluble nitrogen. The biological values (BV) of the rations ranged from 85.7% to 100.0% and the digestibility for maintenance, were 1.20 and 0.41 g/day/Wkg 0.75 during the feeding trials. Values obtained for endogenous N losses and N requirement for low maintenance were low compared with reported values and this may indicate adaptation of the dwarf sheep for survival under inadequate dietary protein supply.


2019 ◽  
Vol 70 (3) ◽  
pp. 1669
Author(s):  
S. KAMINARIES ◽  
A. SCORDOBEKI ◽  
E. ZOIDOU ◽  
G. MOATSOU

Novel reduced-fat goat-cheese (R) was produced from high-pasteurized milk using Penicillium candidum as an adjunct. A full-fat goat-cheese (F) from pasteurized milk without mold addition was produced for comparison reasons. Physicochemical analyses of the two cheeses were performed through the 14-d period of ripening. The effect of P.candidum on proteolysis of goat-cheese caseins and the production of hydrophilic and hydrophobic peptides during cheese ripening were investigated. To our knowledge, similar results for reduced-fat, mold-ripened, goat-milk cheeses have not been previously reported before. R-cheese exhibited a higher organoleptic score and developed properties similar to Kopanisti, which is a Protected Designation of Origin Greek soft cheese with specific intense flavour manufactured from raw milk without the use of starters. Moreover, R-cheese had significantly higher moisture, protein in dry matter and water soluble nitrogen contents than F-cheese and was less adhesive. The high-pasteurization improved the texture and cheese yield, while the use of P. candidum as an adjunct improved the flavour, increased and accelerated proteolysis in R-cheese. According to the results, the technology for R-cheese employed in the present study can be easily adopted and could be used to produce a reduced-fat goat-cheese.


2005 ◽  
Vol 72 (2) ◽  
pp. 234-242 ◽  
Author(s):  
Mutlag M Al-Otaibi ◽  
R Andrew Wilbey

This study demonstrated that both chymosin and salt-in-moisture (SM) were important factors for proteolysis in the manufacture of ultrafiltrated white-salted cheese, with significant effects on water-soluble nitrogen and nitrogen soluble in trichloroacetic acid. In contrast, the levels of free amino acids were not significantly affected by chymosin and salt treatments. The cheeses made using high levels of chymosin with low SM had lower levels of residual αs1- and β-casein at the end of ripening. On texture profile analysis, the hardness and fracturability of the cheeses significantly increased with SM and decreased during ripening. Increases in chymosin significantly contributed to the overall weakening of the structure throughout ripening. Bitter flavour was detected after 12 weeks in the cheese made with the higher chymosin level and lower SM, which could be the result of accumulation of γ-casein fractions. The sensory data indicated that the hedonic responses for low chymosin with low SM cheeses were good and acceptable in flavour, which may be due to the moderate levels of proteolysis products.


1977 ◽  
Vol 146 (2) ◽  
pp. 344-360 ◽  
Author(s):  
L C Yang ◽  
P R Soprey ◽  
M K Wittner ◽  
E N Fox

We have demonstrated that T lymphocytes from the spleens of adult guinea pigs sensitized to group A streptococcal antigens are cytotoxic for cultured fetal guinea pig heart cells. Lymphocyte cytotoxicity, measured by 51Cr release from target cells, was stimulated by sensitization in vivo with group A whole cells, cell walls, and purified protoplast membranes emulsified with complete Freund's adjuvant (CFA). Sensitization with group C streptococcal antigens in CFA or CFA alone produced lymphocytes with little or no specific cytotoxic activity. Target cells of cultured fetal skeletal muscle, liver, or skin were relatively refractory to effector cell cytotoxicity. The presence of antigenic determinants on the membranes of cultured myofibers, cross-reacting with group A streptococcal cellular antigens, was confirmed by immunofluorescence. These data are discussed in terms of a model for poststreptococcal rheumatic myocarditis in which cell-mediated autoimmune mechanisms may participate.


1960 ◽  
Vol 38 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Wm. Harold Minshall

Extension growth of the chlorophyll-containing roots of Hydrocharis morsusranae was inhibited by 0.5 p.p.m. of 3-(4-chlorophenyl)-1,1-dimethylurea (monuron) whereas concentrations close to the water saturation point of 230 p.p.m. were required to inhibit extension growth of the non-chlorophyll-containing attached roots of Zea mays and Phleum pratense and the detached roots of Pisum sativum.A total of 15–20 μg of monuron per gram fresh leaf applied through the cut petiole of detached primary leaves of Phaseolus vulgaris inhibited the increase of dry matter by 90% and suppressed transpiration 40–50%. Internal concentrations of 1–2 μg/g of monuron produced simultaneous enhancement of dry matter increase and of transpiration but concentrations of 5–10 μg/g produced a suppression of dry matter increase concurrently with an enhancement of transpiration. Age of leaf and the time of year in which the plants were grown altered the critical internal concentration levels required to affect dry matter increase and transpiration.Analysis of detached leaves treated with 15–20 μg/g monuron indicated a marked suppression of the formation of non-water-soluble carbohydrate, a slight suppression of the formation of water-soluble nitrogen, but little or no effect on water-soluble carbohydrate or on non-water-soluble nitrogen.In detached leaves o-phenanthroline, 3-phenyl-1,1-dimethylurea, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea resembled monuron closely in symptom development and in their effect on dry matter production and transpiration. Iodoacetamide, 2,4-dinitrophenol, and 8-hydroxyquinoline each produced some effects similar to monuron but differed from it in certain respects; Thiourea, sodium diethyldithiocarbamate, sodium fluoracetate, ethyl-NN-diphenylcarbamate, and hydroxylamine hydrochloride were without noticeable effect.


Sign in / Sign up

Export Citation Format

Share Document