feeding trials
Recently Published Documents


TOTAL DOCUMENTS

460
(FIVE YEARS 87)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
pp. 102-114
Author(s):  
Chisowa DM ◽  
Mpofu, I DT ◽  
Daura MT ◽  
Syampaku EM

This study evaluated the effect of upgrading the quality of maize stover (MS) on milk nutritive value. The study involved feeding MS improved using urea (U), chopped groundnut stover (cGS), chopped soybean stover (cSS), mineralized groundnut stover solution (mGS) and mineralized soybean stover solution (mSS) to lactating dairy cows. The feeding trial involved twelve (12) dairy cows in their second parity. Effect of supplementation with MS improved with U, cGS, cSS, mGS and mSS on milk quality was evaluated following on-station feeding trials. The study involved 22 factorial experiments within a Completely Randomised Design (CRD). Milk samples were analysed for protein, lactose, fat and solid not fat (SNF). Mean milk protein levels ranged from 3.52mg/ml to 3,73mg/ml (s.e=0.03) for milk from cows fed on MS improved using cGS and mGS respectively. Protein and Lactose were observed to be the least variable (3.64g/ml ±0.12, and 5.24g ±0.24 respectively). Average milk fat content was highest (4.78%, se=0.52) in milk from cows fed on UET treated MS and lowest (3.43%, se=0.52) in milk from cows fed on gGS protein based MS. Within legume type milk fat was higher(4.75%±1.99) in milk from cows fed on MS blended with mGS than that in milk from cows fed on MS improved with cGS (3.43%±1.99). Similar result was observed in milk fat from cows fed on MS improved with the use of soybean. Lactose in milk from cows fed on UET treated MS was highest (5.51g, se=0.061) and lowest (5.10g, se=0.061) in milk from cows fed on MS blended with cGS. Milk from cows fed on MS improved with mGS was higher (9.61p/cwt, se=0.14) in SNF and lowest (8.88p/cwt, se=0.14) in milk from cows fed on MS with cGS. The milk density values ranged from 32.65sg, se=0.53 for milk from cows fed on UET treated MS to 30.42sg, se=0.053 for milk from cows fed on MS blended with cGS. Milk components were higher when cows were fed on MS improved using mineralized legume stover solutions.


2022 ◽  
Vol 8 ◽  
Author(s):  
Anjali D. Boyd ◽  
Nia S. Walker ◽  
Stephanie R. Valdez ◽  
Y. Stacy Zhang ◽  
Andrew H. Altieri ◽  
...  

In coastal wetlands and tropical reefs, snails can regulate foundation species by feeding on marsh grasses and hard corals. In many cases, their impacts are amplified because they facilitate microbial infection in grazer-induced wounds. Whether snails commonly graze live plants and facilitate microbial growth on plants in tropical seagrass systems is less explored. On a Belizean Caye, we examined patterns in snail-generated grazer scars on the abundant turtlegrass (Thalassia testudinum). Our initial survey showed the occurrence of snail-induced scarring on live turtlegrass blades was common, with 57% of live leaves scarred. Feeding trials demonstrated that two of five common snails (Tegula fasciata–smooth tegula and Smaragdia viridis–emerald nerite) grazed unepiphytized turtlegrass blades and that smooth tegula abundance had a positive relationship with scarring intensity. Subsequent surveys at three Caribbean sites (separated by >150 km) also showed a high occurrence of snail-induced scars on turtlegrass blades. Finally, simulated herbivory experiments and field observations of a turtlegrass bed in Florida, United States suggests that herbivore damage could facilitate fungal growth in live seagrass tissue through mechanical opening of tissue. Combined, these findings reveal that snail grazing on live turtlegrass blades in the Caribbean can be common. Based on these results, we hypothesize that small grazers could be exerting top-down control over turtlegrass growth directly via grazing and/or indirectly by facilitating microbial infection in live seagrass tissue. Further studies are needed to determine the generality and relative importance of direct and indirect effects of gastropod grazing on turtlegrass health.


Nutrients ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 225
Author(s):  
Seetha Anitha ◽  
David Ian Givens ◽  
Kowsalya Subramaniam ◽  
Shweta Upadhyay ◽  
Joanna Kane-Potaka ◽  
...  

Undernutrition, such as stunting and underweight, is a major public health concern, which requires multi-sectoral attention. Diet plays a key role in growth and should optimally supply all required nutrients to support the growth. While millets (defined broadly to include sorghum) are traditional foods, and climate smart nutritious crops, which are grown across Africa and Asia, they have not been mainstreamed like rice, wheat, and maize. Diversifying staples with millets can potentially provide more macro and micro nutrients, compared to the mainstream crops. However, there is little known scientific evidence to prove millets’ efficacy on growth. Therefore, a systematic review and meta-analysis was conducted to collate evidence of the benefits of millets in improving the growth of children. Eight eligible randomized feeding trials were included in the meta-analysis. Results from the randomized effect model showed a significant effect (p < 0.05) of millet-based diets on mean height (+28.2%) (n = 8), weight (n = 9) (+26%), mid upper arm circumference (n = 5) (+39%) and chest circumference (n = 5) (+37%) in comparison to regular rice-based diets over for the period of 3 months to 4.5 years, which was based on largely substituting rice with millets. When an enhanced and diverse diet was served, replacing rice with millet had only minimal growth improvement on chest circumference (p < 0.05). The quality assessment using GRADE shows that the evidence used for this systematic review and meta-analysis had moderate quality, based on eight scoring criteria. These results demonstrate the value of adding millet as the staple for undernourished communities. Further understanding of the efficacy of millets on growth in a wider range of diets is important to develop appropriate dietary programs and improve the nutritional status of various age groups across Africa and Asia.


Author(s):  
P. V. Patil ◽  
M. K. Gendley ◽  
M. K. Patil ◽  
Sonali Prusty ◽  
R. C. Ramteke

The estimated projected data regarding demand and supply of feed and fodder shows13.20% and 18.43% deficit between demand and supply of dry and green fodder to livestock, respectively. Shortage of land for cultivation of fodders and increased human as well as livestock population has led to heavy competition for food grains that necessitates using the crop residues for the feeding of livestock. These crop residues are rich in fibre and low in other nutrients; they also have low palatability and digestibility. The best way to efficiently utilize the crop residues is to prepare complete feeds from pretreated crop residues + concentrates mixture. Pretreatment of crop residues increases digestibility by increasing rate of delignification, increasing enzymatic hydrolysis of cellulose, hemicelluloses and thus increasing the glucose yield.  The complete feed is a quantitative mixture of all dietary ingredients to provide the specific nutrient requirement for various physiological functions of livestock. Crop residue-based complete feed could be prepared in mash, block and pellet (Expander and extruder) form. In this system, all feed ingredients including roughages are proportioned, processed and mixed into a uniform blend. Different researchers undertook feeding trials of complete animal feed and conventional animal feed and reported better performance in terms of weight gain, milk yield and reproductive performance on feeding complete feed pellets or complete feed blocks to ruminants as compared to conventional ration. In conclusion, crop residue based complete feed could improve ruminant performance and reduces cost of feeding per kg gain or yield and thereby improving livestock based rural economy in developing countries like India.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1571
Author(s):  
Maria Goffredo ◽  
Michela Quaglia ◽  
Matteo De Ascentis ◽  
Silvio Gerardo d’Alessio ◽  
Valentina Federici ◽  
...  

Culicoides midges (Diptera: Ceratopogonidae), the vectors of economically important arboviruses such as bluetongue virus and African horse sickness virus, are of global importance. In the absence of transovarial transmission, the parity rate of a Culicoides population provides imperative information regarding the risk of virus dispersal. Abdominal pigmentation, which develops after blood feeding and ovipositioning, is used as an indicator of parity in Culicoides. During oral susceptibility trials over the last three decades, a persistent proportion of blood engorged females did not develop pigment after incubation. The present study, combining a number of feeding trials and different artificial feeding methods, reports on this phenomenon, as observed in various South African and Italian Culicoides species and populations. The absence of pigmentation in artificial blood-fed females was found in at least 23 Culicoides species, including important vectors such as C. imicola, C. bolitinos, C. obsoletus, and C. scoticus. Viruses were repeatedly detected in these unpigmented females after incubation. Blood meal size seems to play a role and this phenomenon could be present in the field and requires consideration, especially regarding the detection of virus in apparent “nulliparous” females and the identification of overwintering mechanisms and seasonally free vector zones.


2021 ◽  
Author(s):  
◽  
Luke James Cooney

<p>Anthocyanin pigments are common in both reproductive and vegetative organs in plants, yet their functional significance is not entirely understood. While communicative functions have received considerable attention in reproductive organs and the role of anthocyanic colouration in frugivore and pollinator attraction is well understood, it has also been suggested that anthocyanins provide a communicative function in vegetative organs i.e. it may be that anthocyanic colouration in leaves deters herbivores by signalling a plant’s defensive investment. Conversely, there is evidence that anthocyanins in vegetative organs perform a number of physiological functions such as photoprotection and mitigation of various environmental stressors. While these physiological roles have received considerable attention in leaves, little is known about the applicability of these functions to anthocyanins in reproductive organs. There is evidently a gap in anthocyanin research; no study has provided unequivocal support for a communicative function for anthocyanins in vegetative organs and no study has shown that anthocyanins perform a physiological function in the reproductive organs in any species other than domesticated crop plants. To address this imbalance in anthocyanin research my thesis tested for a signalling role in vegetative organs, and then investigated a physiological role for anthocyanins in reproductive organs.  In chapter two, I hypothesised that for Pseudowintera colorata, red (anthocyanic) leaf margins reduce leaf herbivory by signalling to herbivorous insects the presence of increased chemical defences. Using a natural population of P. colorata, I showed that leaves with the wider red margins contained higher concentrations of anthocyanins and polygodial, a sesquiterpene dialdehyde with known anti-feedant properties, and incurred less natural herbivory. Additionally, laboratory feeding trials involving a natural P. colorata herbivore, Ctenopseustis obliquana larvae, showed a preference for green-margined leaves over red, but only when feeding trials were conducted under light regimes which allowed discrimination of leaf colour. Collectively, my data show that red leaf margins provide a reliable and effective visual signal of chemical defence in P. colorata. Moreover, C. obliquana larvae apparently perceive and respond to the colour of leaf margins, rather than to olfactory cues. My study is therefore the first to provide direct support for a communicative function for anthocyanins in vegetative organs.  In peduncles, rays and pedicels, the sterile components of an inflorescence, anthocyanin accumulation has exclusively been considered an adaptation to promote frugivore visitation; however, anthocyanins may instead be produced to mitigate light stress. In chapter three, I tested the requirements of a physiological function, that anthocyanins provide photoprotection for Sambucus nigra peduncles which turn red prior to fruit maturation. I found that accumulation of red pigmentation required exposure to full sunlight and that anthocyanins significantly reduced the quantity of green light that would normally reach chlorenchyma in the peduncle. Under saturating white light, red peduncles maintained higher quantum efficiencies of photosystem II compared to green peduncles, and red portions of peduncle recovered from photoinactivation more quickly than did green portions. My data are, therefore, the first to show that anthocyanins perform a physiological function in the reproductive organs of a naturalised species.  In chapter four, I hypothesised that anthocyanin accumulation in senescing Sambucus canadensis peduncles prolongs senescence and enhances nitrogen resorption. Red peduncles possessed several traits indicative of a prolonged senescence; their rates of chlorophyll and xanthophyll decline were lower, while tensile strength and elasticity were higher than for green peduncles. Red peduncles were also less susceptible to photoinactivation than the green ones at the later stages of senescence. However, manipulating green peduncles with light filters possessing transmittance properties comparable to an anthocyanic tissue layer did not increase peduncle longevity or nitrogen resorption. I concluded that like senescing leaves, red peduncles display many characteristics indicative of a prolonged senescence, but I am unable to attribute this benefit to the presence of anthocyanins.  This thesis provides a significant contribution to our understanding of the role of anthocyanins in plants in two ways: it is the first to directly demonstrate that anthocyanins perform a communicative function in vegetative organs, and is the first to show for a naturalised (non-cultivar) species, that anthocyanins perform a physiological function in reproductive organs.</p>


2021 ◽  
Author(s):  
◽  
Luke James Cooney

<p>Anthocyanin pigments are common in both reproductive and vegetative organs in plants, yet their functional significance is not entirely understood. While communicative functions have received considerable attention in reproductive organs and the role of anthocyanic colouration in frugivore and pollinator attraction is well understood, it has also been suggested that anthocyanins provide a communicative function in vegetative organs i.e. it may be that anthocyanic colouration in leaves deters herbivores by signalling a plant’s defensive investment. Conversely, there is evidence that anthocyanins in vegetative organs perform a number of physiological functions such as photoprotection and mitigation of various environmental stressors. While these physiological roles have received considerable attention in leaves, little is known about the applicability of these functions to anthocyanins in reproductive organs. There is evidently a gap in anthocyanin research; no study has provided unequivocal support for a communicative function for anthocyanins in vegetative organs and no study has shown that anthocyanins perform a physiological function in the reproductive organs in any species other than domesticated crop plants. To address this imbalance in anthocyanin research my thesis tested for a signalling role in vegetative organs, and then investigated a physiological role for anthocyanins in reproductive organs.  In chapter two, I hypothesised that for Pseudowintera colorata, red (anthocyanic) leaf margins reduce leaf herbivory by signalling to herbivorous insects the presence of increased chemical defences. Using a natural population of P. colorata, I showed that leaves with the wider red margins contained higher concentrations of anthocyanins and polygodial, a sesquiterpene dialdehyde with known anti-feedant properties, and incurred less natural herbivory. Additionally, laboratory feeding trials involving a natural P. colorata herbivore, Ctenopseustis obliquana larvae, showed a preference for green-margined leaves over red, but only when feeding trials were conducted under light regimes which allowed discrimination of leaf colour. Collectively, my data show that red leaf margins provide a reliable and effective visual signal of chemical defence in P. colorata. Moreover, C. obliquana larvae apparently perceive and respond to the colour of leaf margins, rather than to olfactory cues. My study is therefore the first to provide direct support for a communicative function for anthocyanins in vegetative organs.  In peduncles, rays and pedicels, the sterile components of an inflorescence, anthocyanin accumulation has exclusively been considered an adaptation to promote frugivore visitation; however, anthocyanins may instead be produced to mitigate light stress. In chapter three, I tested the requirements of a physiological function, that anthocyanins provide photoprotection for Sambucus nigra peduncles which turn red prior to fruit maturation. I found that accumulation of red pigmentation required exposure to full sunlight and that anthocyanins significantly reduced the quantity of green light that would normally reach chlorenchyma in the peduncle. Under saturating white light, red peduncles maintained higher quantum efficiencies of photosystem II compared to green peduncles, and red portions of peduncle recovered from photoinactivation more quickly than did green portions. My data are, therefore, the first to show that anthocyanins perform a physiological function in the reproductive organs of a naturalised species.  In chapter four, I hypothesised that anthocyanin accumulation in senescing Sambucus canadensis peduncles prolongs senescence and enhances nitrogen resorption. Red peduncles possessed several traits indicative of a prolonged senescence; their rates of chlorophyll and xanthophyll decline were lower, while tensile strength and elasticity were higher than for green peduncles. Red peduncles were also less susceptible to photoinactivation than the green ones at the later stages of senescence. However, manipulating green peduncles with light filters possessing transmittance properties comparable to an anthocyanic tissue layer did not increase peduncle longevity or nitrogen resorption. I concluded that like senescing leaves, red peduncles display many characteristics indicative of a prolonged senescence, but I am unable to attribute this benefit to the presence of anthocyanins.  This thesis provides a significant contribution to our understanding of the role of anthocyanins in plants in two ways: it is the first to directly demonstrate that anthocyanins perform a communicative function in vegetative organs, and is the first to show for a naturalised (non-cultivar) species, that anthocyanins perform a physiological function in reproductive organs.</p>


2021 ◽  
Vol 13 (11) ◽  
pp. 1
Author(s):  
Kun-Jun Han ◽  
Kenneth A. Albrecht

Cup plant (Silphium perfoliatum L.) may serve as an alternative perennial forage crop in lowlands of the north central United States. Three feeding trials were conducted with Holstein cows (Bos taurus) at the early, mid, and late lactation stages to evaluate the impact of different cup plant silage substitution levels for alfalfa (Medicago sativa L.)-corn (Zea mays L.) silage mixture on milking cow performance. The concentrations of lignin and CP (crude protein) in the first cut and regrowth cup plant silage were lower than alfalfa silage. Substituting one-half of the silage reduced voluntary dry matter (DM) intake of early lactation stage cows by 11%. Although milk composition was not changed by the substitution, the 4% FCM (fat corrected milk) production was reduced by 7.5%. Another feeding trial tested substitution of one-third and two-thirds of the silage for mid-lactation cows. Increasing cup plant silage up to two-thirds of the forage portion in the diet reduced DM intakes and 4% FCM production by 21.8 and 8.7%, respectively. Milk composition did not change. Cow bodyweight was reduced as the substitution rate increased. Finally, a feeding trial with late-lactation cows indicated substitution of one-fourth of the silage performed equivalent in DM intake, milk composition, and milk production to those of cows fed a low forage diet (50% alfalfa-corn silage in diet), or a high forage diet (66% alfalfa-corn silage in diet). Based on the results of the three feeding trials, it is concluded that cup plant silage can substitute mixture of alfalfa-corn silage at up to 30% of the forage portion in diets without substantial negative impacts on the performance of dairy cows, especially during late lactation.


Author(s):  
M. M. Mika’ilu ◽  
A. A. Kwaido ◽  
S. A. Maigandi ◽  
I. M. Ribah ◽  
K. M. Aljameel ◽  
...  

The experiment was carried out at Kebbi State University of Science and Technology, Aliero using thirty two (32) yearlings Uda Rams in two feeding trials ran concurrently. Sixteen (16) rams were used in each experiment with four treatments replicated four times in a completely randomized factorial design (2 × 4). The animal represents the replicates while the processing method (drying and ensiling) and the level of inclusion represents the treatments respectively. The level of inclusion are 0, 10, 20 and 30% dried cassava peels (DCP) and ensiled cassava peels (ECP) respectively. Data were collected in each trial on hematological characteristics. Data generated was subjected to analysis of variance and least significant difference (LSD) was used to separate the means. Hematological values of rams fed DCP were within the normal range while those fed ECP were below the normal range. The results shows significant difference (P<0.05) between dried and ensiled method of processing in terms of haemoglobin, MCH, WBC and MCV. Rams fed dried cassava peels had lower haemoglobin and PCV compared to normal range. It was concluded that there was no significant difference between rams fed dried cassava peels and those fed ensiled cassava peels at 30% level of inclusion.


Sign in / Sign up

Export Citation Format

Share Document