scholarly journals Coupling of [33S]sulphur to molybdenum(V) in different reduced forms of xanthine oxidase

1981 ◽  
Vol 199 (3) ◽  
pp. 629-637 ◽  
Author(s):  
J P G Malthouse ◽  
G N George ◽  
D J Lowe ◽  
R C Bray

Different reduced forms of xanthine oxidase, labelled specifically in the cyanide-labile site with 33S, were prepared and examined by electron paramagnetic resonance. Coupling of this isotope to molybdenum(V) was quantified with the help of computer simulations and found to differ markedly from one reduced form to another. The xanthine Very Rapid signal shows strong, highly anisotropic, coupling with A(33S)av. 1.27 mT. For this signal, axes of the g- and A(33S)-tensors are rotated relative to one another. One axis of the A-tensor is in the plane of gxx ang gyy, but rotated by 40 degrees relative to the gxx axis, whereas the direction of weakest coupling to sulphur deviates by 10 degrees from the gzz axis. In contrast with this signal, only rather weaker coupling was observed in different types of Rapid signal [A(33S)av. 0.3--0.4 mT], and in the Inhibited signal coupling was weaker still [A(33S)av. 0.1--0.2 mT]. Clearly, there must be substantial differences in the structures of the molybdenum centre in the different signal-giving species, with the sulphur atom perhaps in an equatorial type of ligand position in the Very Rapid species but in a more axial one in the other species. Structures are discussed in relation to the mechanism of action of the enzyme and the nature of the proton-accepting group that participates in turnover.

1969 ◽  
Vol 114 (4) ◽  
pp. 725-734 ◽  
Author(s):  
R C Bray ◽  
T. Vänngård

Further electron-paramagnetic-resonance studies relating to the role of molybdenum in the enzymic mechanisms of xanthine oxidase were carried out. The classification of the various molybdenum signals obtained on reducing the enzyme is briefly discussed. The group of ‘Rapidly appearing’ signals, which are obtained with all substrates within the turnover time and which show interaction with exchangeable protons, were studied in detail. Signals with salicylaldehyde, purine and xanthine in H2O and in 95% D2O were examined at 9 and 35GHz and interpreted with the help of computer simulation. Molybdenum atoms in a number of different chemical environments are involved, each substrate giving rise to two superimposed spectra with slightly different parameters; g values and proton splittings were determined. The spectrum with salicylaldehyde is believed to represent the reduced enzyme alone not in the form of a complex with substrate and its two constituents are believed to represent the two molybdenum atoms bonded slightly differently within the enzyme molecule. With purine and xanthine the spectra are thought to represent complexes of reduced enzyme with substrate molecules. With xanthine one signal-giving species shows coupling to two equivalent protons, whereas in all the other species observed two non-equivalent protons are involved. The origin of the protons is discussed in the light of the direct hydrogen-transfer mechanism implicated earlier for the enzyme. It is concluded that the proton derived from the substrate is located at least 3å from the molybdenum atom with which it interacts.


1978 ◽  
Vol 175 (3) ◽  
pp. 955-957 ◽  
Author(s):  
D J Lowe

The e.p.r. spectra of the Fe-proteins of nitrogenase from all sources studied have unusual features in that they have very anisotropic linewidths and low integrated intensities. These characteristics can be explained by assuming that one of the two electrons accepted by these proteins is located at a rapidly relaxing paramagnetic centre that is unobservable by e.p.r., but causes anisotropic broadening of the e.p.r. signal of the other electron. Complex-formation between Fe-proteins and MgATP is described in terms of a 50-60 degrees rotation of the e.p.r.-observable centre.


2021 ◽  
Vol 74 (1) ◽  
pp. 34 ◽  
Author(s):  
Jessica K. Bilyj ◽  
Jeffrey R. Harmer ◽  
Paul V. Bernhardt

Bis-thiosemicarbazones derived from the β-diketone benzoylacetone (H3banR, R=Me, Et, Ph) are potentially tetradentate N2S2 ligands whose coordination chemistry with copper is reported. In the absence of oxygen and in the presence of base they form anionic CuII complexes of the fully deprotonated ligands [CuII(banR)]–. Upon exposure to atmospheric oxygen they undergo a complex series of reactions leading to two types of products; one a ligand oxidised ketone complex [CuII(banRO)] and the other an unprecedented dimeric di-CuIII complex [(CuIII(banR))2] depending on the R substituent. Time-resolved UV-vis spectroscopy, cyclic voltammetry, spectroelectrochemistry, and electron paramagnetic resonance (EPR) spectroscopy have been used to identify intermediates on the way to stable products formed under both anaerobic and aerobic conditions. It is found that both ligand-centred and Cu-centred oxidation reactions are occurring in parallel leading to this unusually complicated mixture of products.


1980 ◽  
Vol 34 (3) ◽  
pp. 296-299
Author(s):  
Isao Suzuki ◽  
Yoshihisa Kaneko

A two-way electron paramagnetic resonance cavity for magnetic dipole transition (MDT) and electric dipole transition (EDT) was manufactured. There are two openings to fit the sample cell for MDT and for EDT in the cylindrical TE011 mode. One opening is located on the axis of the cavity and the other is located away from the axis. EPR spectra obtained from the mixture of oxygen and nitrogen oxide when the sample cell was inserted in each opening showed the selective transition of the MDT or of the EDT of the species. When dc electric field parallel to the steady magnetic field was applied to the nitrogen oxide located away from the axis, each of the EDT peaks was divided into two peaks, one of which was higher than the other. The magnitude of the splitting was proportional to the electric field strength, in agreement with the theory. The permanent electric dipole moment 0.159 × 10−18 cgs esu obtained agreed with the value reported in the literature.


1979 ◽  
Vol 177 (1) ◽  
pp. 357-360 ◽  
Author(s):  
R C Bray ◽  
S Gutteridge ◽  
D A Stotter ◽  
S J Tanner

On the basis of the work of Gutteridge, Tanner & Bray [Biochem. J. (1978) 175, 887-897] and of other data in the literature, a mechanism for the reaction of xanthine oxidase with reducing substrates is proposed. In the Michaelis complex, xanthine is bound to molybdenum via the N-9 nitrogen atom. Coupled transfer of two electrons to molybdenum and the C-8 proton to the enzyme yields (Enzyme)-Mo-SH. Concerted with this process, reaction of the xanthine residue with a nucleophile in the active centre yields a covalent intermediate that breaks down to give the product by alternative pathways at high and at low pH values.


Sign in / Sign up

Export Citation Format

Share Document