scholarly journals Involvement of phospholipases D1 and D2 in sphingosine 1-phosphate-induced ERK (extracellular-signal-regulated kinase) activation and interleukin-8 secretion in human bronchial epithelial cells

2002 ◽  
Vol 367 (3) ◽  
pp. 751-760 ◽  
Author(s):  
Lixin WANG ◽  
Rhett CUMMINGS ◽  
Peter USATYUK ◽  
Andrew MORRIS ◽  
Kaikobad IRANI ◽  
...  

Sphingosine 1-phosphate (S1P), a metabolite of sphingomyelin degradation, stimulates interleukin-8 (IL-8) secretion in human bronchial epithelial (Beas-2B) cells. The molecular mechanisms regulating S1P-mediated IL-8 secretion are yet to be completely defined. Here we provide evidence that activation of phospholipases D1 and D2 (PLD1 and PLD2) by S1P regulates the phosphorylation of extracellular-signal-regulated kinase (ERK) and IL-8 secretion in Beas-2B cells. S1P, in a time- and dose-dependent manner, enhanced the threonine/tyrosine phosphorylation of ERK. The inhibition of S1P-induced ERK phosphorylation by pertussis toxin and PD 98059 indicated coupling of S1P receptors to Gi and the ERK signalling cascade respectively. Treatment of Beas-2B cells with butan-1-ol, but not butan-3-ol, abrogated the S1P-induced phosphorylation of Raf-1 and ERK, suggesting that PLD is involved in this activation. The roles of PLD1 and PLD2 in ERK activation and IL-8 secretion activated by S1P were investigated by infecting cells with adenoviral constructs of wild-type and catalytically inactive mutants of PLD1 and PLD2. Infection of Beas-2B cells with the wild-type constructs resulted in the activation of PLD1 and PLD2 by S1P and PMA. Also, the enhanced production of [32P]phosphatidic acid and [32P]phosphatidylbutanol in the presence of butan-1-ol and the increased phosphorylation of ERK by S1P were blocked by the catalytically inactive mutants hPLD1-K898R and mPLD2-K758R. Transient transfection of Beas-2B cells with human PLD1 and mouse PLD2 cDNAs potentiated S1P-mediated IL-8 secretion compared with vector controls. In addition, PD 98059 attenuated IL-8 secretion induced by S1P in a dose-dependent fashion. These results demonstrate that both PLD1 and PLD2 participate in S1P stimulation of ERK phosphorylation and IL-8 secretion in bronchial epithelial cells.

2002 ◽  
Vol 277 (33) ◽  
pp. 30227-30235 ◽  
Author(s):  
Rhett J. Cummings ◽  
Narasimham L. Parinandi ◽  
Ari Zaiman ◽  
Lixin Wang ◽  
Peter V. Usatyuk ◽  
...  

Respirology ◽  
2000 ◽  
Vol 5 (4) ◽  
pp. 309-313 ◽  
Author(s):  
Yasuhiro Gon ◽  
Shu Hashimoto ◽  
Tomoko Nakayama ◽  
Ken Matsumoto ◽  
Toshiya Koura ◽  
...  

2002 ◽  
Vol 282 (5) ◽  
pp. L904-L911 ◽  
Author(s):  
Daniel J. Tschumperlin ◽  
Jonathan D. Shively ◽  
Melody A. Swartz ◽  
Eric S. Silverman ◽  
Kathleen J. Haley ◽  
...  

Airway smooth muscle constriction leads to the development of compressive stress on bronchial epithelial cells. Normal human bronchial epithelial cells exposed to an apical-to-basal transcellular pressure difference equivalent to the computed stress in the airway during bronchoconstriction demonstrate enhanced phosphorylation of extracellular signal-regulated kinase (ERK). The response is pressure dependent and rapid, with phosphorylation increasing 14-fold in 30 min, and selective, since p38 and c-Jun NH2-terminal kinase phosphorylation remains unchanged after pressure application. Transcellular pressure also elicits a ninefold increase in expression of mRNA encoding heparin-binding epidermal growth factor-like growth factor (HB-EGF) after 1 h, followed by prominent immunostaining for pro-HB-EGF after 6 h. Inhibition of the ERK pathway with PD-98059 results in a dose-dependent reduction in pressure-induced HB-EGF gene expression. The magnitude of the HB-EGF response to transcellular pressure and tumor necrosis factor (TNF)-α (1 ng/ml) is similar, and the combined mechanical and inflammatory stimulus is more effective than either stimulus alone. These results demonstrate that compressive stress is a selective and potent activator of signal transduction and gene expression in bronchial epithelial cells.


2015 ◽  
Vol 123 (3) ◽  
pp. 231-236 ◽  
Author(s):  
Weidong Wu ◽  
Phillip A. Wages ◽  
Robert B. Devlin ◽  
David Diaz-Sanchez ◽  
David B. Peden ◽  
...  

2012 ◽  
Vol 303 (2) ◽  
pp. L97-L106 ◽  
Author(s):  
Shilpa Nimishakavi ◽  
Marina Besprozvannaya ◽  
Wilfred W. Raymond ◽  
Charles S. Craik ◽  
Dieter C. Gruenert ◽  
...  

Prostasin is a membrane-anchored protease expressed in airway epithelium, where it stimulates salt and water uptake by cleaving the epithelial Na+ channel (ENaC). Prostasin is activated by another transmembrane tryptic protease, matriptase. Because ENaC-mediated dehydration contributes to cystic fibrosis (CF), prostasin and matriptase are potential therapeutic targets, but their catalytic competence on airway epithelial surfaces has been unclear. Seeking tools for exploring sites and modulation of activity, we used recombinant prostasin and matriptase to identify substrate t-butyloxycarbonyl-l-Gln-Ala-Arg-4-nitroanilide (QAR-4NA), which allowed direct assay of proteases in living cells. Comparisons of bronchial epithelial cells (CFBE41o−) with and without functioning cystic fibrosis transmembrane conductance regulator (CFTR) revealed similar levels of apical and basolateral aprotinin-inhibitable activity. Although recombinant matriptase was more active than prostasin in hydrolyzing QAR-4NA, cell surface activity resisted matriptase-selective inhibition, suggesting that prostasin dominates. Surface biotinylation revealed similar expression of matriptase and prostasin in epithelial cells expressing wild-type vs. ΔF508-mutated CFTR. However, the ratio of mature to inactive proprostasin suggested surface enrichment of active enzyme. Although small amounts of matriptase and prostasin were shed spontaneously, prostasin anchored to the cell surface by glycosylphosphatidylinositol was the major contributor to observed QAR-4NA-hydrolyzing activity. For example, the apical surface of wild-type CFBE41o− epithelial cells express 22% of total, extractable, aprotinin-inhibitable, QAR-4NA-hydrolyzing activity and 16% of prostasin immunoreactivity. In conclusion, prostasin is present, mature and active on the apical surface of wild-type and CF bronchial epithelial cells, where it can be targeted for inhibition via the airway lumen.


Sign in / Sign up

Export Citation Format

Share Document