scholarly journals A role for palmitoylation in the quality control, assembly and secretion of apolipoprotein B

2004 ◽  
Vol 377 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Gonzalo L. VILAS ◽  
Luc G. BERTHIAUME

ApoB (apolipoprotein B)-containing lipoprotein particles, such as chylomicrons, very-low-density and low-density lipoprotein particles, transport triacylglycerol and cholesteryl esters in the bloodstream. A palmitoylation site was previously mapped to Cys-1085 in a functional truncated apoB variant (apoB-29) and abolished by mutagenesis. This Cys-1085Ser mutation resulted in secretion of smaller and denser lipoprotein particles containing 80% less cholesteryl ester and triacylglycerol than wild-type controls. We show that palmitoylation of apoB-29 occurs in the ER (endoplasmic reticulum), stimulates the ER–Golgi transport rate of apoB-29 almost 2-fold, doubles the secretion efficiency of wild-type apoB-29 in comparison with (Cys-1085Ser)apoB-29 and reduces significantly the association of wild-type apoB-29 with calnexin in comparison with (Cys-1085Ser)apoB-29. While non-palmitoylated apoB-29 co-localized extensively with constitutively secreted transferrin, wild-type apoB-29 did so only partially and was enriched in ER extensions. Our results suggest that palmitoylation of apoB regulates the biogenesis of nascent apoB-containing lipoprotein particles by concentrating apoB in a specialized ER compartment and by stimulating dissociation from constituents of the ER quality-control machinery. This reduced interaction would lead to a faster ER–Golgi transit time and a higher secretion efficiency of wild-type apoB-29. Palmitoylation could regulate the amount of apoB available for secretion of neutral lipids.

2000 ◽  
Vol 11 (2) ◽  
pp. 721-734 ◽  
Author(s):  
Yang Zhao ◽  
James B. McCabe ◽  
Jean Vance ◽  
Luc G. Berthiaume

Apolipoprotein B (apoB) is an essential component of chylomicrons, very low density lipoproteins, and low density lipoproteins. ApoB is a palmitoylated protein. To investigate the role of palmitoylation in lipoprotein function, a palmitoylation site was mapped to Cys-1085 and removed by mutagenesis. Secreted lipoprotein particles formed by nonpalmitoylated apoB were smaller and denser and failed to assemble a proper hydrophobic core. Indeed, the relative concentrations of nonpolar lipids were three to four times lower in lipoprotein particles containing mutant apoB compared with those containing wild-type apoB, whereas levels of polar lipids isolated from wild-type or mutant apoB lipoprotein particles appeared identical. Palmitoylation localized apoB to large vesicular structures corresponding to a subcompartment of the endoplasmic reticulum, where addition of neutral lipids was postulated to occur. In contrast, nonpalmitoylated apoB was concentrated in a dense perinuclear area corresponding to the Golgi compartment. The involvement of palmitoylation as a structural requirement for proper assembly of the hydrophobic core of the lipoprotein particle and its intracellular sorting represent novel roles for this posttranslational modification.


Author(s):  
Soo-Ho Choi ◽  
Colin Agatisa-Boyle ◽  
Ayelet Gonen ◽  
Alisa Kim ◽  
Jungsu Kim ◽  
...  

Objective: Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp −/− compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp −/− mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. Conclusions: These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.


2009 ◽  
Vol 118 (5) ◽  
pp. 333-339 ◽  
Author(s):  
Allan D. Sniderman ◽  
Jacqueline De Graaf ◽  
Patrick Couture ◽  
Ken Williams ◽  
Robert S. Kiss ◽  
...  

The objectives of this analysis are to re-examine the foundational studies of the in vivo metabolism of plasma LDL (low-density lipoprotein) particles in humans and, based on them, to reconstruct our understanding of the governance of the concentration of plasma LDL and the maintenance of cholesterol homoeostasis in the hepatocyte. We believe that regulation of cholesterol homoeostasis within the hepatocyte is demonstrably more complex than envisioned by the LDL receptor paradigm, the conventional model to explain the regulation of plasma LDL and the fluxes of cholesterol into the liver, a model which was generated in the fibroblast but has never been fully validated in the hepatocyte. We suggest that the LDL receptor paradigm should be reconfigured as the apoB (apolipoprotein B) paradigm, which states that the rate at which LDL particles are produced is at least an important determinant of their concentration in plasma as the rate at which they are cleared from plasma and that secretion of cholesterol within VLDL (very-low-density lipoprotein) particles is an important mechanism of maintaining cholesterol homoeostasis within the hepatocyte. These two paradigms are not mutually exclusive. The LDL receptor paradigm, however, includes only one critical aspect of the regulation of plasma LDL, namely the rate at which LDL particles are cleared through the LDL receptor pathway, but ignores another – the rate at which LDL particles are added to the plasma compartment. The apoB paradigm includes both and points to a different model of how the hepatocyte achieves cholesterol homoeostasis in a complex metabolic environment.


1999 ◽  
Vol 338 (2) ◽  
pp. 281-287 ◽  
Author(s):  
Miek C. JONG ◽  
Ko WILLEMS Van DIJK ◽  
Vivian E.H. DAHLMANS ◽  
Hans Van Der BOOM ◽  
Kunisha KOBAYASHI ◽  
...  

We have shown previously that human apolipoprotein (apo)C1 transgenic mice exhibit hyperlipidaemia, due primarily to an impaired clearance of very-low-density lipoprotein (VLDL) particles from the circulation. In the absence of at least the low-density-lipoprotein receptor (LDLR), it was shown that APOC1 overexpression in transgenic mice inhibited the hepatic uptake of VLDL via the LDLR-related protein. In the present study, we have now examined the effect of apoC1 on the binding of lipoproteins to both the VLDL receptor (VLDLR) and the LDLR. The binding specificity of the VLDLR and LDLR for apoC1-enriched lipoprotein particles was examined in vivo through adenovirus-mediated gene transfer of the VLDLR and the LDLR [giving rise to adenovirus-containing (Ad)-VLDLR and Ad-LDLR respectively] in APOC1 transgenic mice, LDLR-deficient (LDLR-/-) mice and wild-type mice. Remarkably, Ad-VLDLR treatment did not reduce hyperlipidaemia in transgenic mice overexpressing human APOC1, irrespective of both the level of transgenic expression and the presence of the LDLR, whereas Ad-VLDLR treatment did reverse hyperlipidaemia in LDLR-/- and wild-type mice. On the other hand, Ad-LDLR treatment strongly decreased plasma lipid levels in these APOC1 transgenic mice. These results suggest that apoC1 inhibits the clearance of lipoprotein particles via the VLDLR, but not via the LDLR. This hypothesis is corroborated by in vitro binding studies. Chinese hamster ovary (CHO) cells expressing the VLDLR (CHO-VLDLR) or LDLR (CHO-LDLR) bound less APOC1 transgenic VLDL than wild-type VLDL. Intriguingly, however, enrichment with apoE enhanced dose-dependently the binding of wild-type VLDL to CHO-VLDLR cells (up to 5-fold), whereas apoE did not enhance the binding of APOC1 transgenic VLDL to these cells. In contrast, for binding to CHO-LDLR cells, both wild-type and APOC1 transgenic VLDL were stimulated upon enrichment with apoE. From these studies, we conclude that apoC1 specifically inhibits the apoE-mediated binding of triacylglycerol-rich lipoprotein particles to the VLDLR, whereas apoC1-enriched lipoproteins can still bind to the LDLR. The variability in specificity of these lipoprotein receptors for apoC1-containing lipoprotein particles provides further evidence for a regulatory role of apoC1 in the delivery of lipoprotein constituents to different tissues on which these receptors are located.


1986 ◽  
Vol 234 (1) ◽  
pp. 245-248 ◽  
Author(s):  
W Jessup ◽  
G Jurgens ◽  
J Lang ◽  
H Esterbauer ◽  
R T Dean

The incorporation of the lipid peroxidation product 4-hydroxynonenal into low-density lipoprotein (LDL) increases the negative charge of the particle, and decreases its affinity for the fibroblast LDL receptor. It is suggested that this modification may occur in vivo, and might promote atherogenesis.


Sign in / Sign up

Export Citation Format

Share Document