scholarly journals Topology of transmembrane segments 1–4 in the human chloride/bicarbonate anion exchanger 1 (AE1) by scanning N-glycosylation mutagenesis

2005 ◽  
Vol 390 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Joanne C. Cheung ◽  
Jing Li ◽  
Reinhart A. F. Reithmeier

Human AE1 (anion exchanger 1), or Band 3, is an abundant membrane glycoprotein found in the plasma membrane of erythrocytes. The physiological role of the protein is to carry out chloride/bicarbonate exchange across the plasma membrane, a process that increases the carbon-dioxide-carrying capacity of blood. To study the topology of TMs (transmembrane segments) 1–4, a series of scanning N-glycosylation mutants were created spanning the region from EC (extracellular loop) 1 to EC2 in full-length AE1. These constructs were expressed in HEK-293 (human embryonic kidney) cells, and their N-glycosylation efficiencies were determined. Unexpectedly, positions within putative TMs 2 and 3 could be efficiently glycosylated. In contrast, the same positions were very poorly glycosylated when present in mutant AE1 with the SAO (Southeast Asian ovalocytosis) deletion (ΔA400–A408) in TM1. These results suggest that the TM2–3 region of AE1 may become transiently exposed to the endoplasmic reticulum lumen during biosynthesis, and that there is a competition between proper folding of the region into the membrane and N-glycosylation at introduced sites. The SAO deletion disrupts the proper integration of TMs 1–2, probably leaving the region exposed to the cytosol. As a result, engineered N-glycosylation acceptor sites in TM2–3 could not be utilized by the oligosaccharyltransferase in this mutant form of AE1. The properties of TM2–3 suggest that these segments form a re-entrant loop in human AE1.

2004 ◽  
Vol 378 (3) ◽  
pp. 1015-1021 ◽  
Author(s):  
Joanne C. CHEUNG ◽  
Reinhart A. F. REITHMEIER

AE1 (anion exchanger 1) is a glycoprotein found in the plasma membrane of erythrocytes, where it mediates the electroneutral exchange of chloride and bicarbonate, a process important in CO2 removal from tissues. It had been previously shown that human AE1 purified from erythrocytes is covalently modified at Cys-843 in the membrane domain with palmitic acid. In this study, the role of Cys-843 in human AE1 trafficking was investigated by expressing various AE1 and Cys-843Ala (C843A) mutant constructs in transiently transfected HEK-293 cells. The AE1 C843A mutant was expressed to a similar level to AE1. The rate of N-glycan conversion from high-mannose into complex form in a glycosylation mutant (N555) of AE1 C843A, and thus the rate of trafficking from the endoplasmic reticulum to the Golgi, were comparable with that of AE1 (N555). Like AE1, AE1 C843A could be biotinylated at the cell surface, indicating that a cysteine residue at position 843 is not required for cell-surface expression of the protein. The turnover rate of AE1 C843A was not significantly different from AE1. While other proteins could be palmitoylated, labelling of transiently transfected HEK-293 cells or COS7 cells with [3H]palmitic acid failed to produce any detectable AE1 palmitoylation. These results suggest that AE1 is not palmitoylated in HEK-293 or COS7 cells and can traffic to the plasma membrane.


2000 ◽  
Vol 275 (21) ◽  
pp. 15709-15716 ◽  
Author(s):  
Valery V. Petrov ◽  
Kristine P. Padmanabha ◽  
Robert K. Nakamoto ◽  
Kenneth E. Allen ◽  
Carolyn W. Slayman

1997 ◽  
Vol 185 (3) ◽  
pp. 579-582 ◽  
Author(s):  
Davide Ferrari ◽  
Paola Chiozzi ◽  
Simonetta Falzoni ◽  
Stefania Hanau ◽  
Francesco Di  Virgilio

Microglial cells express a peculiar plasma membrane receptor for extracellular ATP, named P2Z/P2X7 purinergic receptor, that triggers massive transmembrane ion fluxes and a reversible permeabilization of the plasma membrane to hydrophylic molecules of up to 900 dalton molecule weight and eventual cell death (Di Virgilio, F. 1995. Immunol. Today. 16:524–528). The physiological role of this newly cloned (Surprenant, A., F. Rassendren, E. Kawashima, R.A. North and G. Buell. 1996. Science (Wash. DC). 272:735–737) cytolytic receptor is unknown. In vitro and in vivo activation of the macrophage and microglial cell P2Z/P2X7 receptor by exogenous ATP causes a large and rapid release of mature IL-1β. In the present report we investigated the role of microglial P2Z/P2X7 receptor in IL-1β release triggered by LPS. Our data suggest that LPS-dependent IL-1β release involves activation of this purinergic receptor as it is inhibited by the selective P2Z/P2X7 blocker oxidized ATP and modulated by ATP-hydrolyzing enzymes such as apyrase or hexokinase. Furthermore, microglial cells release ATP when stimulated with LPS. LPS-dependent release of ATP is also observed in monocyte-derived human macrophages. It is suggested that bacterial endotoxin activates an autocrine/paracrine loop that drives ATP-dependent IL-1β secretion.


1998 ◽  
Vol 275 (4) ◽  
pp. F550-F564 ◽  
Author(s):  
Eli J. Holtzman ◽  
Sumit Kumar ◽  
Carol A. Faaland ◽  
Fern Warner ◽  
Paul J. Logue ◽  
...  

We isolated and characterized the cDNAs for the human, pig, and Caenorhabditis elegansK-Cl cotransporters. The pig and human homologs are 94% identical and contain 1,085 and 1,086 amino acids, respectively. The deduced protein of the C. elegans K-Cl cotransporter clone (CE-KCC1) contains 1,003 amino acids. The mammalian K-Cl cotransporters share ∼45% similarity with CE-KCC1. Hydropathy analyses of the three clones indicate typical KCC topology patterns with 12 transmembrane segments, large extracellular loops between transmembrane domains 5 and 6 (unique to KCC), and large COOH-terminal domains. Human KCC1 is widely expressed among various tissues. This KCC1 gene spans 23 kb and is organized in 24 exons, whereas the CE-KCC1 gene spans 3.5 kb and contains 10 exons. Transiently and stably transfected human embryonic kidney cells (HEK-293) expressing the human, pig, and C. elegans K-Cl cotransporter fulfilled two (pig) or five (human and C. elegans) criteria for increased expression of the K-Cl cotransporter. The criteria employed were basal K-Cl cotransport; stimulation of cotransport by swelling, N-ethylmaleimide, staurosporine, and reduced cell Mg concentration; and secondary stimulation of Na-K-Cl cotransport.


2016 ◽  
Vol 310 (9) ◽  
pp. C764-C772 ◽  
Author(s):  
Ensaf Almomani ◽  
Rawad Lashhab ◽  
R. Todd Alexander ◽  
Emmanuelle Cordat

Mutations in the SLC4A1 gene coding for kidney anion exchanger 1 (kAE1) cause distal renal tubular acidosis (dRTA). We investigated the fate of the most common truncated dominant dRTA mutant kAE1 R901X. In renal epithelial cells, we found that kAE1 R901X is less abundant than kAE1 wild-type (WT) at the plasma membrane. Although kAE1 WT and kAE1 R901X have similar half-lives, the decreased abundance of kAE1 R901X at the surface is due to an increased endocytosis rate and a decreased recycling rate of endocytosed proteins. We propose that, in polarized renal epithelial cells, the apically mistargeted kAE1 R901X mutant is endocytosed faster than kAE1 WT and its recycling to the basolateral membrane is delayed. This resets the equilibrium, such that kAE1 R901X resides predominantly in an endomembrane compartment, thereby likely participating in development of dRTA disease.


2010 ◽  
Vol 299 (5) ◽  
pp. C1015-C1027 ◽  
Author(s):  
Corina M. Balut ◽  
Yajuan Gao ◽  
Sandra A. Murray ◽  
Patrick H. Thibodeau ◽  
Daniel C. Devor

The number of intermediate-conductance, Ca2+-activated K+ channels (KCa3.1) present at the plasma membrane is deterministic in any physiological response. However, the mechanisms by which KCa3.1 channels are removed from the plasma membrane and targeted for degradation are poorly understood. Recently, we demonstrated that KCa3.1 is rapidly internalized from the plasma membrane, having a short half-life in both human embryonic kidney cells (HEK293) and human microvascular endothelial cells (HMEC-1). In this study, we investigate the molecular mechanisms controlling the degradation of KCa3.1 heterologously expressed in HEK and HMEC-1 cells. Using immunofluorescence and electron microscopy, as well as quantitative biochemical analysis, we demonstrate that membrane KCa3.1 is targeted to the lysosomes for degradation. Furthermore, we demonstrate that either overexpressing a dominant negative Rab7 or short interfering RNA-mediated knockdown of Rab7 results in a significant inhibition of channel degradation rate. Coimmunoprecipitation confirmed a close association between Rab7 and KCa3.1. On the basis of these findings, we assessed the role of the ESCRT machinery in the degradation of heterologously expressed KCa3.1, including TSG101 [endosomal sorting complex required for transport (ESCRT)-I] and CHMP4 (ESCRT-III) as well as VPS4, a protein involved in the disassembly of the ESCRT machinery. We demonstrate that TSG101 is closely associated with KCa3.1 via coimmunoprecipitation and that a dominant negative TSG101 inhibits KCa3.1 degradation. In addition, both dominant negative CHMP4 and VPS4 significantly decrease the rate of membrane KCa3.1 degradation, compared with wild-type controls. These results are the first to demonstrate that plasma membrane-associated KCa3.1 is targeted for lysosomal degradation via a Rab7 and ESCRT-dependent pathway.


2007 ◽  
Vol 403 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Yoko Nakano ◽  
Botond Banfi ◽  
Algirdas J. Jesaitis ◽  
Mary C. Dinauer ◽  
Lee-Ann H. Allen ◽  
...  

Otoconia are small biominerals in the inner ear that are indispensable for the normal perception of gravity and motion. Normal otoconia biogenesis requires Nox3, a Nox (NADPH oxidase) highly expressed in the vestibular system. In HEK-293 cells (human embryonic kidney cells) transfected with the Nox regulatory subunits NoxO1 (Nox organizer 1) and NoxA1 (Nox activator 1), functional murine Nox3 was expressed in the plasma membrane and exhibited a haem spectrum identical with that of Nox2, the electron transferase of the phagocyte Nox. In vitro Nox3 cDNA expressed an ∼50 kDa primary translation product that underwent N-linked glycosylation in the presence of canine microsomes. RNAi (RNA interference)-mediated reduction of endogenous p22phox, a subunit essential for stabilization of Nox2 in phagocytes, decreased Nox3 activity in reconstituted HEK-293 cells. p22phox co-precipitated not only with Nox3 and NoxO1 from transfectants expressing all three proteins, but also with NoxO1 in the absence of Nox3, indicating that p22phox physically associated with both Nox3 and with NoxO1. The plasma membrane localization of Nox3 but not of NoxO1 required p22phox. Moreover, the glycosylation and maturation of Nox3 required p22phox expression, suggesting that p22phox was required for the proper biosynthesis and function of Nox3. Taken together, these studies demonstrate critical roles for p22phox at several distinct points in the maturation and assembly of a functionally competent Nox3 in the plasma membrane.


2004 ◽  
Vol 21 (6) ◽  
pp. 395-402 ◽  
Author(s):  
Saranya Kittanakom ◽  
Thitima Keskanokwong ◽  
Varaporn Akkarapatumwong ◽  
Pa-thai Yenchitsomanus ◽  
Reinhart A. F. Reithmeier

2021 ◽  
Author(s):  
Jakub Zahumensky ◽  
Caroline Mota Fernandes ◽  
Petra Vesela ◽  
Maurizio Del Poeta ◽  
James Bernard Konopka ◽  
...  

Sphingolipids are essential building blocks of eukaryotic membranes and important signalling molecules, tightly regulated in response to environmental and physiological inputs. Mechanism of sphingolipid level perception at the plasma membrane remains unclear. In Saccharomyces cerevisiae, Nce102 protein has been proposed to function as sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that production of Nce102 increases following sphingolipid biosynthesis inhibition and Nce102 is internalized when excess sphingolipid precursors are supplied. This suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. Physiological role of Nce102 in regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of complex sphingolipids and long-chain bases in nce102? deletion mutant. Nce102 behaves analogously in human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species.


Sign in / Sign up

Export Citation Format

Share Document