scholarly journals Mechanism of membrane redistribution of protein kinase C by its ATP-competitive inhibitors

2007 ◽  
Vol 405 (2) ◽  
pp. 331-340 ◽  
Author(s):  
Hideyuki Takahashi ◽  
Hideo Namiki

ATP-competitive inhibitors of PKC (protein kinase C) such as the bisindolylmaleimide GF 109203X, which interact with the ATP-binding site in the PKC molecule, have also been shown to affect several redistribution events of PKC. However, the reason why these inhibitors affect the redistribution is still controversial. In the present study, using immunoblot analysis and GFP (green fluorescent protein)-tagged PKC, we showed that, at commonly used concentrations, these ATP-competitive inhibitors alone induced redistribution of DAG (diacylglycerol)-sensitive PKCα, PKCβII, PKCδ and PKCϵ, but not atypical PKCζ, to the endomembrane or the plasma membrane. Studies with deletion and point mutants showed that the DAG-sensitive C1 domain of PKC was required for membrane redistribution by these inhibitors. Furthermore, membrane redistribution was prevented by the aminosteroid PLC (phospholipase C) inhibitor U-73122, although an ATP-competitive inhibitor had no significant effect on acute DAG generation. Immunoblot analysis showed that an ATP-competitive inhibitor enhanced cell-permeable DAG analogue- or phorbol-ester-induced translocation of endogenous PKC. Furthermore, these inhibitors also enhanced [3H]phorbol 12,13-dibutyrate binding to the cytosolic fractions from PKCα–GFP-overexpressing cells. These results clearly demonstrate that ATP-competitive inhibitors cause redistribution of DAG-sensitive PKCs to membranes containing endogenous DAG by altering the DAG sensitivity of PKC and support the idea that the inhibitors destabilize the closed conformation of PKC and make the C1 domain accessible to DAG. Most importantly, our findings provide novel insights for the interpretation of studies using ATP-competitive inhibitors, and, especially, suggest caution about the interpretation of the relationship between the redistribution and kinase activity of PKC.

2007 ◽  
Vol 35 (5) ◽  
pp. 1021-1026 ◽  
Author(s):  
G.R. Budas ◽  
T. Koyanagi ◽  
E.N. Churchill ◽  
D. Mochly-Rosen

PKC (protein kinase C) isoenzymes are related protein kinases, involved in many signalling events in normal state and in disease. Basic research into identifying the molecular basis of PKC selectivity led to simple strategies to identify selective competitive inhibitor peptides and allosteric agonist peptides of individual PKC isoenzymes. The strategies and rationale used to identify these peptide regulators of protein–protein interaction may be applicable to other signalling events. Importantly, the PKC-regulating peptides proved to be useful pharmacological tools and may serve as drugs or drug leads for a variety of human diseases.


1997 ◽  
Vol 324 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Benjamin L. J. WEBB ◽  
Mark A. LINDSAY ◽  
Peter J. BARNES ◽  
Mark A. GIEMBYCZ

The protein kinase C (PKC) isoenzymes expressed by bovine tracheal smooth muscle (BTSM) were identified at the protein and mRNA levels. Western immunoblot analyses reliably identified PKCα, PKCβI and PKCβII. In some experiments immunoreactive bands corresponding to PKCδ, PKCϵ and PKCθ were also labelled, whereas the γ, η and ζ isoforms of PKC were never detected. Reverse transcriptase PCR of RNA extracted from BTSM using oligonucleotide primer pairs designed to recognize unique sequences in the PKC genes for which protein was absent or not reproducibly identified by immunoblotting, amplified cDNA fragments that corresponded to the predicted sizes of PKCδ, PKCϵ and PKCζ, which was confirmed by Southern blotting. Anion-exchange chromatography of the soluble fraction of BTSM following homogenization in Ca2+-free buffer resolved two major peaks of activity. Using ϵ-peptide as the substrate, the first peak of activity was dependent upon Ca2+ and 4β-PDBu (PDBu = phorbol 12,13-dibutyrate), and represented a mixture of PKCs α, βI and βII. In contrast, the second peak of activity, which eluted at much higher ionic strength, also appeared to comprise a combination of conventional PKCs that were arbitrarily denoted PKCα′, PKCβI′ and PKCβII′. However, these novel enzymes were cofactor-independent and did not bind [3H]PDBu, but were equally sensitive to the PKC inhibitor GF 109203X compared with bona fide conventional PKCs, and migrated on SDS/polyacrylamide gels as 81 kDa polypeptides. Taken together, these data suggest that PKCs α′, βI′ and βII′ represent modified, but not proteolysed, forms of their respective native enzymes that retain antibody immunoreactivity and sensitivity to PKC inhibitors, but have lost their sensitivity to Ca2+ and PDBu when ϵ-peptide is used as the substrate.


2010 ◽  
Vol 299 (2) ◽  
pp. G320-G328 ◽  
Author(s):  
Claudia Stross ◽  
Angelika Helmer ◽  
Katrin Weissenberger ◽  
Boris Görg ◽  
Verena Keitel ◽  
...  

Bile salts influence signaling and metabolic pathways. In hepatocytes, the sodium taurocholate cotransporting polypeptide (Ntcp) is a major determinant of intracellular bile salt levels. Short-term downregulation of Ntcp is not well characterized to date. FLAG and enhanced green fluorescent protein (EGFP) tags were cloned to the extra- and intracellular termini of Ntcp. Endocytosis of Ntcp in transfected HepG2 cells was visualized by fluorescence of EGFP, and membrane surface expression of Ntcp was quantified by flow cytometry with fluorochrome-labeled FLAG antibodies. Activation of protein kinase C (PKC) by phorbolester or thymeleatoxin an activator of Ca2+-dependent conventional PKCs (cPKCs), induced endocytosis of Ntcp, whereas the Na+-K+-ATPase remained in the plasma membrane. The PKC inhibitor BIM I and the cPKC-selective inhibitor Gö6976 abolished PMA-induced endocytosis. Because of this internalization, cell surface expression of Ntcp was reduced by 36 ± 7%, bile salt uptake was decreased by 25%, and taurolithocholate sulfate-induced cell toxicity was prevented. In conclusion, Ca2+-dependent PKCs induce vesicular retrieval of Ntcp, thereby reducing bile salt uptake. This mechanism may protect hepatocytes from toxic intracellular bile salt concentrations.


2012 ◽  
Vol 165 (3) ◽  
pp. 320-330 ◽  
Author(s):  
Narsimha Mamidi ◽  
Sukhamoy Gorai ◽  
Jashobanta Sahoo ◽  
Debasis Manna

2006 ◽  
Vol 17 (2) ◽  
pp. 799-813 ◽  
Author(s):  
Keylon L. Cheeseman ◽  
Takehiko Ueyama ◽  
Tanya M. Michaud ◽  
Kaori Kashiwagi ◽  
Demin Wang ◽  
...  

Protein kinase C-ϵ (PKC-ϵ) translocates to phagosomes and promotes uptake of IgG-opsonized targets. To identify the regions responsible for this concentration, green fluorescent protein (GFP)-protein kinase C-ϵ mutants were tracked during phagocytosis and in response to exogenous lipids. Deletion of the diacylglycerol (DAG)-binding ϵC1 and ϵC1B domains, or the ϵC1B point mutant ϵC259G, decreased accumulation at phagosomes and membrane translocation in response to exogenous DAG. Quantitation of GFP revealed that ϵC259G, ϵC1, and ϵC1B accumulation at phagosomes was significantly less than that of intact PKC-ϵ. Also, the DAG antagonist 1-hexadecyl-2-acetyl glycerol (EI-150) blocked PKC-ϵ translocation. Thus, DAG binding to ϵC1B is necessary for PKC-ϵ translocation. The role of phospholipase D (PLD), phosphatidylinositol-specific phospholipase C (PI-PLC)-γ1, and PI-PLC-γ2 in PKC-ϵ accumulation was assessed. Although GFP-PLD2 localized to phagosomes and enhanced phagocytosis, PLD inhibition did not alter target ingestion or PKC-ϵ localization. In contrast, the PI-PLC inhibitor U73122 decreased both phagocytosis and PKC-ϵ accumulation. Although expression of PI-PLC-γ2 is higher than that of PI-PLC-γ1, PI-PLC-γ1 but not PI-PLC-γ2 consistently concentrated at phagosomes. Macrophages from PI-PLC-γ2-/-mice were similar to wild-type macrophages in their rate and extent of phagocytosis, their accumulation of PKC-ϵ at the phagosome, and their sensitivity to U73122. This implicates PI-PLC-γ1 as the enzyme that supports PKC-ϵ localization and phagocytosis. That PI-PLC-γ1 was transiently tyrosine phosphorylated in nascent phagosomes is consistent with this conclusion. Together, these results support a model in which PI-PLC-γ1 provides DAG that binds to ϵC1B, facilitating PKC-ϵ localization to phagosomes for efficient IgG-mediated phagocytosis.


2011 ◽  
Vol 22 (24) ◽  
pp. 4908-4917 ◽  
Author(s):  
Deepti Gadi ◽  
Alice Wagenknecht-Wiesner ◽  
David Holowka ◽  
Barbara Baird

Protein kinase C β (PKCβ) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequesters phosphoinositides at the inner leaflet of the plasma membrane until MARCKS dissociates after phosphorylation by activated PKC. Real-time fluorescence imaging confirms synchronization between stimulated oscillations of intracellular Ca2+concentrations and oscillatory association of PKCβ–enhanced green fluorescent protein with the plasma membrane. Similarly, MARCKS-ED tagged with monomeric red fluorescent protein undergoes antigen-stimulated oscillatory dissociation and rebinding to the plasma membrane with a time course that is synchronized with reversible plasma membrane association of PKCβ. We find that MARCKS-ED dissociation is prevented by mutation of four serine residues that are potential sites of phosphorylation by PKC. Cells expressing this mutated MARCKS-ED SA4 show delayed onset of antigen-stimulated Ca2+mobilization and substantial inhibition of granule exocytosis. Stimulation of degranulation by thapsigargin, which bypasses inositol 1,4,5-trisphosphate production, is also substantially reduced in the presence of MARCKS-ED SA4, but store-operated Ca2+entry is not inhibited. These results show the capacity of MARCKS-ED to regulate granule exocytosis in a PKC-dependent manner, consistent with regulated sequestration of phosphoinositides that mediate granule fusion at the plasma membrane.


2003 ◽  
Vol 14 (2) ◽  
pp. 658-669 ◽  
Author(s):  
Elisabeth A. Cox ◽  
David Bennin ◽  
Ashley T. Doan ◽  
Timothy O'Toole ◽  
Anna Huttenlocher

Mammalian cDNA expression cloning was used to identify novel regulators of integrin-mediated cell-substratum adhesions. Using a focal adhesion morphology screen, we identified a cDNA with homology to a receptor for activated protein kinase C (RACK1) that induced a loss of central focal adhesions and stress fibers in CHO-K1 cells. The identified cDNA was a C-terminal truncated form of RACK1 that had one of the putative protein kinase C binding sites but lacked the region proposed to bind the β integrin cytoplasmic domain and the tyrosine kinase Src. To investigate the role of RACK1 during cell spreading and migration, we tagged RACK1, a C-terminal truncated RACK1 and a point mutant that does not bind Src (RACK Y246F) with green fluorescent protein and expressed them in CHO-K1 cells. We found that RACK1 regulates the organization of focal adhesions and that it localizes to a subset of nascent focal complexes in areas of protrusion that contain paxillin but not vinculin. We also found that RACK1 regulates cell protrusion and chemotactic migration through its Src binding site. Together, these findings suggest that RACK1 regulates adhesion, protrusion, and chemotactic migration through its interaction with Src.


1998 ◽  
Vol 274 (5) ◽  
pp. L842-L853 ◽  
Author(s):  
Larissa A. Shimoda ◽  
J. T. Sylvester ◽  
James S. K. Sham

Although endothelin (ET)-1 is an important regulator of pulmonary vascular tone, little is known about the mechanisms by which ET-1 causes contraction in this tissue. Using the whole cell patch-clamp technique in rat intrapulmonary arterial smooth muscle cells, we found that ET-1 and the voltage-dependent K+(KV)-channel antagonist 4-aminopyridine, but not the Ca2+-activated K+-channel antagonist charybdotoxin (ChTX), caused membrane depolarization. In the presence of 100 nM ChTX, ET-1 (10−10to 10−7 M) caused a concentration-dependent inhibition of K+ current (56.2 ± 3.8% at 10−7 M) and increased the rate of current inactivation. These effects of ET-1 on K+ current were markedly reduced by inhibitors of protein kinase C (staurosporine and GF 109203X) and phospholipase C (U-73122) or under Ca2+-free conditions and were mimicked by activators of protein kinase C (phorbol 12-myristate 13-actetate and 1,2-dioctanoyl- sn-glycerol). These data suggest that ET-1 modulated pulmonary vascular reactivity by depolarizing pulmonary arterial smooth muscle, due in part to the inhibition of KV current that occurred via activation of the phospholipase C-protein kinase C signal transduction pathway.


Sign in / Sign up

Export Citation Format

Share Document