Formation of assemblies on cell membranes by secreted proteins: molecular studies of free λ light chain aggregates found on the surface of myeloma cells

2013 ◽  
Vol 454 (3) ◽  
pp. 479-489 ◽  
Author(s):  
Andrew T. Hutchinson ◽  
Ansha Malik ◽  
Mark B. Berkahn ◽  
Mark Agostino ◽  
Joyce To ◽  
...  

We have described the presence of cell-membrane-associated κFLCs (free immunoglobulin light chains) on the surface of myeloma cells. Notably, the anti-κFLC mAb (monoclonal antibody) MDX-1097 is being assessed in clinical trials as a therapy for κ light chain isotype multiple myeloma. Despite the clinical potential of anti-FLC mAbs, there have been limited studies on characterizing membrane-associated FLCs at a molecular level. Furthermore, it is not known whether λFLCs can associate with cell membranes of myeloma cells. In the present paper, we describe the presence of λFLCs on the surface of myeloma cells. We found that cell-surface-associated λFLCs are bound directly to the membrane and in an aggregated form. Subsequently, membrane interaction studies revealed that λFLCs interact with saturated zwitterionic lipids such as phosphatidylcholine and phosphatidylethanolamine, and using automated docking, we characterize a potential recognition site for these lipids. Atomic force microscopy confirmed that membrane-associated λFLCs are aggregated. Given the present findings, we propose a model whereby individual FLCs show modest affinity for zwitterionic lipids, with aggregation stabilizing the interaction due to multivalency. Notably, this is the first study to image FLCs bound to phospholipids and provides important insights into the possible mechanisms of membrane association by this unique myeloma surface antigen.

2009 ◽  
Vol 5 (5) ◽  
pp. 5
Author(s):  
V. V. Moroz ◽  
A. M. Chernysh ◽  
Ye. K. Kozlova ◽  
A. K. Kirsanova ◽  
I. S, Novoderzhkina ◽  
...  

2004 ◽  
Vol 10 (S02) ◽  
pp. 1094-1095
Author(s):  
David P. Allison ◽  
Claretta J. Sullivan ◽  
Jennifer L. Morrell ◽  
Peter R. Hoyt ◽  
Mitchel J. Doktycz

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


2001 ◽  
Vol 7 (S2) ◽  
pp. 124-125
Author(s):  
Christopher A. Siedlecki

A widely accepted tenet of biomaterials research is that the initial step following contact of a synthetic material with blood is the rapid adsorption of plasma proteins. The composition of this adsorbed protein layer is dependent on a variety of factors, including the surface properties of the implant material and the nature of the adsorbing proteins, and the composition and function of this protein layer is important in the subsequent biological response and ultimately the success or failure of the implanted material. While a great amount of effort has gone into developing structure/function responses for implanted biomaterials, there is still much about the molecular level interactions to be determined. We utilized atomic force microscopy (AFM) to investigate the molecular-level interactions of proteins with model biomaterial substrates. The AFM is unique in that it offers the opportunity to characterize interfacial environments, determine material properties, measure protein/surface interaction forces, and visualize the tertiary structure of adsorbed proteins.


2015 ◽  
Vol 11 ◽  
pp. 828-836 ◽  
Author(s):  
Stefanie Krysiak ◽  
Qiang Wei ◽  
Klaus Rischka ◽  
Andreas Hartwig ◽  
Rainer Haag ◽  
...  

Nature often serves as a model system for developing new adhesives. In aqueous environments, mussel-inspired adhesives are promising candidates. Understanding the mechanism of the extraordinarily strong adhesive bonds of the catechol group will likely aid in the development of adhesives. With this aim, we study the adhesion of catechol-based adhesives to metal oxides on the molecular level using atomic force microscopy (AFM). The comparison of single catechols (dopamine) with multiple catechols on hyperbranched polyglycerols (hPG) at various pH and dwell times allowed us to further increase our understanding. In particular, we were able to elucidate how to achieve strong bonds of different valency. It was concluded that hyperbranched polyglycerols with added catechol end groups are promising candidates for durable surface coatings.


2000 ◽  
Vol 278 (5) ◽  
pp. F689-F701 ◽  
Author(s):  
Robert M. Henderson ◽  
Hans Oberleithner

Renal physiologists focus on events that take place on and around the surfaces of cells. Various techniques have been developed that follow transport functions at the molecular level, but until recently none of these techniques has been capable of making the behavior of molecular structures visible under physiological conditions. This apparent gap may be filled in the future by the application of atomic force microscopy. This technique produces an image not by optical means, but by “feeling” its way across a surface. Atomic force microscopy can, however, be modified in a number of ways, which means that besides producing a high-resolution image, it is possible to obtain several types of data on the interactions between the ultrastructural components of cell membranes (such as proteins) and other biologically active molecules (such as ATP). In this review we describe the recent use of the atomic force microscope in renal physiology, ranging from experiments in intact cells to those in isolated renal transport protein molecules, include examples of these extended applications of the technique, and point to uses that the microscope has recently found in other areas of biology that should prove fruitful in renal physiology in the near future.


Sign in / Sign up

Export Citation Format

Share Document