scholarly journals Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 modulates Alzheimer's disease amyloid precursor protein processing

2015 ◽  
Vol 470 (3) ◽  
pp. 303-317 ◽  
Author(s):  
Wan Ning Vanessa Chow ◽  
Jacky Chi Ki Ngo ◽  
Wen Li ◽  
Yu Wai Chen ◽  
Ka Ming Vincent Tam ◽  
...  

Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 (SGK1) attenuates amyloid precursor protein (APP) processing via regulation of FE65–APP interaction.

2019 ◽  
Author(s):  
Claire S. Durrant ◽  
Karsten Ruscher ◽  
Olivia Sheppard ◽  
Michael P. Coleman ◽  
Ilknur Özen

AbstractAmyloid beta peptides (Aβ) proteins play a key role in vascular pathology in Alzheimer’s Disease (AD) including impairment of the blood brain barrier and aberrant angiogenesis. Although previous work has demonstrated a pro-angiogenic role of Aβ, the exact mechanisms by which amyloid precursor protein (APP) processing and endothelial angiogenic signalling cascades interact in AD remain a largely unsolved problem. Here, we report that increased endothelial sprouting in human-APP transgenic mouse (TgCRND8) tissue is dependent on β-secretase (BACE1) processing of APP. Higher levels of Aβ processing in TgCRND8 tissue coincides with decreased NOTCH3/JAG1 signalling, over-production of endothelial filopodia and increased numbers of vascular pericytes. Using a novel in vitro approach to study sprouting angiogenesis in TgCRND8 organotypic brain slice cultures (OBSCs), we find that BACE1 inhibition normalises excessive endothelial filopodia formation and restores NOTCH3 signalling. These data present the first evidence for the potential of BACE1 inhibition as an effective therapeutic target for aberrant angiogenesis in AD.SignificanceIn this study, we show that targeting amyloid beta processing provides an opportunity to selectively target tip cell filopodia-driven angiogenesis and develop therapeutic targets for vascular dysfunction related to aberrant angiogenesis in AD. Our data provide the first evidence for a safe level of BACE1 inhibition that can normalize excess angiogenesis in AD, without inducing vascular deficits in healthy tissue. Our findings may pave the way for the development of new angiogenesis dependent therapeutic strategies in Alzheimer’s Disease.


2005 ◽  
Vol 385 (2) ◽  
pp. 545-550 ◽  
Author(s):  
Fiona FLOOD ◽  
Suzanne MURPHY ◽  
Richard F. COWBURN ◽  
Lars LANNFELT ◽  
Brian WALKER ◽  
...  

Aβ (β-amyloid) peptides are found aggregated in the cortical amyloid plaques associated with Alzheimer's disease neuropathology. Inhibition of the proteasome alters the amount of Aβ produced from APP (amyloid precursor protein) by various cell lines in vitro. Proteasome activity is altered during aging, a major risk factor for Alzheimer's disease. In the present study, a human neuroblastoma cell line expressing the C-terminal 100 residues of APP (SH-SY5Y-SPA4CT) was used to determine the effect of proteasome inhibition, by lactacystin and Bz-LLL-COCHO (benzoyl-Leu-Leu-Leu-glyoxal), on APP processing at the γ-secretase site. Proteasome inhibition caused a significant increase in Aβ peptide levels in medium conditioned by SH-SY5Y-SPA4CT cells, and was also associated with increased cell death. APP is a substrate of the apoptosis-associated caspase 3 protease, and we therefore investigated whether the increased Aβ levels could reflect caspase activation. We report that caspase activation was not required for proteasome-inhibitor-mediated effects on APP (SPA4CT) processing. Cleavage of Ac-DEVD-AMC (N-acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin), a caspase substrate, was reduced following exposure of SH-SY5Y-SPA4CT cells to lactacystin, and co-treatment of cells with lactacystin and a caspase inhibitor [Z-DEVD-FMK (benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone)] resulted in higher Aβ levels in medium, augmenting those seen with lactacystin alone. This study indicated that proteasome inhibition could increase APP processing specifically at the γ-secretase site, and increase release of Aβ, in the absence of caspase activation. This indicates that the decline in proteasome function associated with aging would contribute to increased Aβ levels.


2006 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Thomas A. Bayer ◽  
Oliver Wirths ◽  
Katalin Majtényi ◽  
Tobias Hartmann ◽  
Gerd Multhaup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document