scholarly journals Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase

1984 ◽  
Vol 219 (2) ◽  
pp. 481-493 ◽  
Author(s):  
T R Hawkes ◽  
R C Bray

An assay method is described for measurement of absolute concentrations of the molybdenum cofactor, based on complementation of the defective nitrate reductase (‘apo nitrate reductase’) in extracts of the nit-1 mutant of Neurospora crassa. A number of alternative methods are described for preparing, anaerobically, molybdenum-cofactor-containing solutions from sulphite oxidase, xanthine oxidase and desulpho xanthine oxidase. For assay, these were mixed with an excess of extract of the nit-1 mutant, incubated for 24 h at 3.5 degrees C then assayed for NADPH:nitrate reductase activity. In all cases, the specific activity of the molybdenum cofactor, expressed as mumol of NO2-formed/min per ng-atom of Mo added from the denatured molybdoenzyme, was 25 +/- 4, a value that agrees with the known catalytic activity of the nitrate reductase of wild-type Neurospora crassa. This indicates that, under our conditions, there was quantitative transfer of the molybdenum cofactor from denatured molybdoenzyme to yield fully active nitrate reductase. Comparable cofactor assay methods of previous workers, apparently indicating transfer efficiencies of at best a few per cent, have never excluded satisfactorily the possibility that cofactor activity arose, not from stoichiometric constituents of the molybdoenzymes, but from contaminants. The following factors were investigated separately in developing the assay:the efficiency of extraction of the cofactor from the original enzyme, the efficiency of the complementation reaction between cofactor and apo nitrate reductase, and the assay of the resultant nitrate reductase, which must be carried out under non-inhibitory conditions. Though the cofactor is unstable in air (t1/2 about 15 min at 3.5 degrees C), it is stable when kept anaerobic in the presence of sodium dithionite, in aqueous solution or in dimethyl sulphoxide (activity lost at the rate of about 3%/24 h at 20-25 degrees C). Studies of stabilities, and investigations of the effect of added molybdate on the assay, permit conclusions to be drawn about the ligation of molybdenum to the cofactor and about steps in incorporation of the cofactor into the apoenzyme. Though the development of nitrate reductase activity is slow at 3.5 degrees C (t1/2 1.5-3 h) the complementation reaction may be carried out in high yield, aerobically. This is ascribed to rapid formation of an air-stable but catalytically inactive complex of the cofactor, as a precursor of the active nitrate reductase.(ABSTRACT TRUNCATED AT 400 WORDS)

2011 ◽  
Vol 183-185 ◽  
pp. 900-904
Author(s):  
Yu Wen Li ◽  
Yun Jie Wu

This paper addresses the application of improvement in vivo of traditional method for determination of nitrate reductase (NR) activity of leaves to dominant tree species in forest community of northern aspect of Changbai Mountains. It describes the NR activity of tree species related to the shade-endurance and shows that the intolerance tree species has higher NR activity. The NR of a species is also related to the ecological situation of the sites. Tree species with higher NR activities should be selected for breeding of fast growing and high yield tree species.


1989 ◽  
Vol 263 (2) ◽  
pp. 477-483 ◽  
Author(s):  
J Deistung ◽  
R C Bray

A procedure is described for isolation of the pterin molybdenum cofactor, in the active molybdenum-containing state, starting from purified milk xanthine oxidase. The method depends on the use of anaerobic-glove-cabinet techniques and on working in aqueous solution, in the presence of 1 mM-Na2S2O4. SDS was used to denature the protein, followed by ion-exchange chromatography and gel filtration. The cofactor, obtained at concentrations up to 0.5-1.0 mM, was fully active in the nit-1 assay [Hawkes & Bray (1984) Biochem. J. 214, 481-493], with a specific activity of 22 nmol of NO2-/min per pg-atom of Mo (with 15% molybdate-dependence). The Mr, determined by gel filtration, was about 610, consistent with the structure proposed by Kramer, Johnson, Ribeiro, Millington & Rajagopalan [(1987) J. Biol. Chem. 262, 16357-16363]. At pH 5.9, under anaerobic conditions, the cofactor was stable for at least 300 h at 20-25 degrees C.


1991 ◽  
Vol 278 (2) ◽  
pp. 393-397 ◽  
Author(s):  
H N Truong ◽  
C Meyer ◽  
F Daniel-Vedele

Tobacco nitrate reductase (NR) produced in yeast retains cytochrome c reductase activity, but not NR activity. Biochemical data suggest that the haem and FAD domains are functional, and that the molybdenum cofactor (MoCo) domain is inactive owing to the absence of MoCo in yeast. The native form of the produced NR is dimeric. Thus MoCo is not involved in NR dimerization in higher plants, contrary to current assumptions.


2001 ◽  
Vol 183 (19) ◽  
pp. 5491-5495 ◽  
Author(s):  
Sepideh Afshar ◽  
Eric Johnson ◽  
Simon de Vries ◽  
Imke Schröder

ABSTRACT The nitrate reductase of the hyperthermophilic archaeonPyrobaculum aerophilum was purified 137-fold from the cytoplasmic membrane. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the enzyme complex consists of three subunits with apparent molecular weights of 130,000, 52,000, and 32,000. The enzyme contained molybdenum (0.8-mol/mol complex), iron (15.4-mol/mol complex) and cytochrome b (0.49-mol/mol complex) as cofactors. The P. aerophilum nitrate reductase distinguishes itself from nitrate reductases of mesophilic bacteria and archaea by its very high specific activity using reduced benzyl viologen as the electron donor (V max with nitrate, 1,162 s−1 (326 U/mg);V max with chlorate, 1,348 s−1 (378 U/mg) [assayed at 75°C]). The Km values for nitrate and chlorate were 58 and 140 μM, respectively. Azide was a competitive inhibitor and cyanide was a noncompetitive inhibitor of the nitrate reductase activity. The temperature optimum for activity was >95°C. When incubated at 100°C, the purified nitrate reductase had a half-life of 1.5 h. This study constitutes the first description of a nitrate reductase from a hyperthermophilic archaeon.


Sign in / Sign up

Export Citation Format

Share Document