scholarly journals Functional receptors for epidermal growth factor in an epithelial-cell line derived from the rat small intestine

1985 ◽  
Vol 225 (1) ◽  
pp. 85-94 ◽  
Author(s):  
J Blay ◽  
K D Brown

Epidermal growth factor (EGF) regulates the proliferation of cells of a rat intestinal epithelial-cell line (RIE-1) in culture. Confluent RIE-1 cells were stimulated to proliferate by EGF with a half-maximal effect at 1-2 ng/ml. In contrast, the growth of sparse RIE-1 cells was inhibited by the growth factor. Binding studies at 4 degrees C with 125I-EGF identified two classes of binding sites for EGF on RIE-1 cells, one of high affinity (KD = 1.8 × 10(-10)M; 1.8 × 10(4) receptors/cell) and one of lower affinity (KD = 5.2 × 10(-9)M; 6.3 × 10(4) receptors/cell). After binding to the cells at 37 degrees C, 125I-EGF was rapidly internalized and subsequently degraded. Degradation products were released into the medium after a lag of 15-30 min. The degradation of 125I-EGF did not occur at 4 degrees C and was inhibited at 37 degrees C by chloroquine, methylamine or NH4Cl, but not by colchicine. Exposure of RIE-1 cells to EGF caused a time- and dose-dependent loss of EGF receptors from the cell surface. The recovery of receptors after the removal of EGF was retarded in the absence of serum and prevented by the presence of cycloheximide or actinomycin D. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis separation of the 125I-EGF-receptor complex from RIE-1 cells after covalently cross-linking with disuccinimidyl suberate indicated a receptor of Mr congruent to 160 000. The demonstration of functional EGF receptors in this cell line provides further evidence that EGF may regulate intestinal-epithelial-cell physiology.

Parasitology ◽  
2002 ◽  
Vol 125 (1) ◽  
pp. 11-19 ◽  
Author(s):  
A. G. BURET ◽  
K. MITCHELL ◽  
D. G. MUENCH ◽  
K. G. E. SCOTT

In order to improve our understanding of the host cell–parasite interactions in giardiasis, this study assessed the effects of Giardia lamblia on epithelial permeability and tight junctional ZO-1, determined whether epidermal growth factor (EGF) may affect Giardia-induced epithelial injury, and evaluated if EGF modulates epithelial colonization by live G. lamblia trophozoites. Permeability was assessed in assays of trans-epithelial fluxes of FITC-dextran, and ZO-1 integrity was characterized by confocal laser immunofluorescence microscopy in confluent epithelial cell monolayers. G. lamblia significantly increased paracellular permeability and disrupted tight-junctional ZO-1 of a novel non-transformed human small intestinal epithelial cell line (SCBN). Pre-treatment with EGF prevented the development of these abnormalities and significantly inhibited attachment of live trophozoites to the enterocytes, independently of a direct microbiocidal action. These findings demonstrate that G. lamblia may cause intestinal pathophysiology by disrupting tight junctional ZO-1 and increasing epithelial permeability. Apical administration of EGF prevents these abnormalities, and reduces epithelial colonization by the live parasites.


2016 ◽  
Vol 130 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Jennifer C. Miguel ◽  
Adrienne A. Maxwell ◽  
Jonathan J. Hsieh ◽  
Lukas C. Harnisch ◽  
Denise Al Alam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document