scholarly journals Evidence that glucagon-mediated inhibition of acetyl-CoA carboxylase in isolated adipocytes involves increased phosphorylation of the enzyme by cyclic AMP-dependent protein kinase

1985 ◽  
Vol 226 (1) ◽  
pp. 139-145 ◽  
Author(s):  
R Holland ◽  
D G Hardie ◽  
R A Clegg ◽  
V A Zammit

The kinetic parameters and phosphorylation state of acetyl-CoA carboxylase were analysed after purification of the enzyme by avidin-Sepharose chromatography from extracts of isolated adipocytes treated with glucagon or adrenaline. The results provide evidence that the mechanism of inhibition of acetyl-CoA carboxylase in adipocytes treated with glucagon [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788] involves increased phosphorylation of the enzyme. Hormone treatment had effects on the kinetic parameters of the enzyme similar to those of phosphorylation of the enzyme in vitro by cyclic AMP-dependent protein kinase. Glucagon treatment of adipocytes led to increased phosphorylation of acetyl-CoA carboxylase in the same chymotryptic peptide as that containing the major site phosphorylated on the enzyme by purified cyclic AMP-dependent protein kinase in vitro [Munday & Hardie (1984) Eur. J. Biochem. 141, 617-627]. The dose-response curves for inhibition of enzyme activity and increased phosphorylation of the enzyme were very similar, with half-maximal effects occurring at concentrations of glucagon (0.5-1 nM) which are close to the physiological range. In general, the patterns of increased 32P-labelling of chymotryptic peptides induced by glucagon or adrenaline were similar, although there were quantitative differences between the effects of the two hormones on individual peptides. The results are discussed in terms of the possible roles of cyclic AMP-dependent and -independent protein kinases in the regulation of acetyl-CoA carboxylase activity and of lipogenesis in white adipose tissue.

1999 ◽  
Vol 341 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Adrienne N. BOONE ◽  
Brian RODRIGUES ◽  
Roger W. BROWNSEY

Two major forms of mammalian acetyl-CoA carboxylase (EC 6.4.1.2), ACC-α and ACC-β, have been described and the sequences of the isoforms deduced. ACC-β is the predominant isoform expressed in heart and skeletal muscles, in which a major role of malonyl-CoA is probably to regulate fatty acid β-oxidation. The regulatory properties of ACC-β are incompletely defined but it is known that some cellular stresses lead to inhibition in parallel with the activation of AMP-activated protein kinase (AMP-PK). Here we examine the phosphorylation state of ACC-β within intact rat cardiac ventricular myocytes. Treatment of myocytes with the β-adrenergic agonist isoprenaline (isoproterenol) led to increased ACC-β phosphorylation that was maximal within 2 min and with 50 nM agonist. Effects of isoprenaline were revealed by the incorporation of 32P into ACC in cells incubated with [32P]Pi and also by a marked decrease (approx. 80%) in subsequent phosphorylation in vitro with cAMP-dependent protein kinase (PKA). Analysis of tryptic phosphopeptides revealed that ACC-β was phosphorylated at multiple sites by incubationin vitro with PKA or AMP-PK. Treatment of myocytes with isoprenaline affected all the major phosphorylation sites of ACC-β that were recognized in vitro by purified PKA, so that subsequent phosphorylation in vitro was greatly diminished after cell stimulation. β-Adrenergic stimulation led to decreases in cellular malonyl-CoA concentrations but no changes in kinetic properties of ACC were detected after cell homogenization and partial purification of proteins. The results suggest that: (1) ACC-β is rapidly phosphorylated at multiple sites within intact cardiac ventricular myocytes after β-adrenergic stimulation, (2) ACC-β is phosphorylated in vitro by PKA and AMP-PK at multiple sites, including at least one site accessible to each kinase, as well as kinase-selective sites, and (3) PKA is a physiologically significant ACC-β kinase.


1987 ◽  
Vol 241 (3) ◽  
pp. 773-782 ◽  
Author(s):  
A C Borthwick ◽  
N J Edgell ◽  
R M Denton

Superose 6 chromatography was used to separate rapidly the polymeric and dimeric forms of acetyl-CoA carboxylase. With preparations of acetyl-CoA carboxylase purified by Sepharose-avidin chromatography, it is shown that citrate promotes polymerization and that the extent of polymerization is diminished, but not eliminated, after phosphorylation by cyclic-AMP-dependent protein kinase. After exposure of rat epididymal adipose tissue to insulin, evidence was obtained for a marked increase in polymerization. The polymeric form, which was active in the absence of citrate, exhibited increased phosphorylation, particularly on a tryptic peptide designated the I-peptide in an earlier study [Brownsey & Denton (1982) Biochem. J. 202, 77-86]. In contrast, in tissue exposed to the beta-agonist isoprenaline, most of the phosphorylated acetyl-CoA carboxylase appeared to be in the dimeric form if chromatography was carried out in the absence of citrate, whereas in the presence of citrate the degree of polymerization was diminished.


1990 ◽  
Vol 265 (3) ◽  
pp. 769-775 ◽  
Author(s):  
R A Clegg ◽  
K A Ottey

The role of cyclic AMP in acute regulation of the metabolism of mammary tissue in the lactating rat was examined by measuring the activity ratio of cyclic AMP-dependent protein kinase (A-kinase) and by examining the properties of this enzyme in its two major isoenzymic forms. Isoenzyme II is the major form in soluble extracts of rat mammary tissue. A-kinase activity ratio in such extracts is unaffected by starvation of the lactating rat. Treatment of the intact rat with isoprenaline, or addition of isoprenaline to incubations in vitro of mammary acini, resulted in a major increase in the activity ratio of A-kinase. These treatments equally affected isoenzymes I and II. The treatment in vitro lead to a rapid depletion of A-kinase as subsequently measured in extracts of acini. The degree of activation of the enzymes acetyl-CoA carboxylase and glycogen phosphorylase in extracts of mammary tissue and of acini was assessed as a function of these treatments. The increased activation of A-kinase induced by isoprenaline was unaccompanied by significant changes in the activity of acetyl-CoA carboxylase in acini, although we previously showed that this agent activates acetyl-CoA carboxylase in intact mammary tissue. Contrastingly, isoprenaline-induced enhancement of A-kinase activity was accompanied by an increase in the activity ratio of phosphorylase in acini. These results indicate that: (a) a normal response of expressed A-kinase activity to cyclic AMP operates in mammary acini and mammary tissue from lactating rats; (b) rapid modulation of the total amount of soluble A-kinase is mediated in mammary epithelial cells by cyclic AMP; (c) phosphorylase, an ultimate target of the protein phosphorylation cascade initiated by A-kinase, is activated in acini under conditions where A-kinase activity is enhanced; and (d) mechanisms other than that of the A-kinase phosphorylation/inhibition model for acetyl-CoA carboxylase regulation must operate in mammary tissue preparations and in vivo to account for the response of this enzyme to enhanced A-kinase activity.


1992 ◽  
Vol 12 (4) ◽  
pp. 1507-1514
Author(s):  
C L Denis ◽  
S C Fontaine ◽  
D Chase ◽  
B E Kemp ◽  
L T Bemis

Four ADR1c mutations that occur close to Ser-230 of the Saccharomyces cerevisiae transcriptional activator ADR1 and which greatly enhance the ability of ADR1 to activate ADH2 expression under glucose-repressed conditions have been shown to reduce or eliminate cyclic AMP-dependent protein kinase (cAPK) phosphorylation of Ser-230 in vitro. In addition, unregulated cAPK expression in vivo blocks ADH2 depression in an ADR1-dependent fashion in which ADR1c mutations display decreased sensitivity to unregulated cAPK activity. Taken together, these data have suggested that ADR1c mutations enhance ADR1 activity by blocking cAPK phosphorylation and inactivation of Ser-230. We have isolated and characterized an additional 17 ADR1c mutations, defining 10 different amino acid changes, that were located in the region defined by amino acids 227 through 239 of ADR1. Three observations, however, indicate that the ADR1c phenotype is not simply equivalent to a lack of cAPK phosphorylation. First, only some of these newly isolated ADR1c mutations affected the ability of yeast cAPK to phosphorylate corresponding synthetic peptides modeled on the 222 to 234 region of ADR1 in vitro. Second, we observed that strains lacking cAPK activity did not display enhanced ADH2 expression under glucose growth conditions. Third, when Ser-230 was mutated to a nonphosphorylatable residue, lack of cAPK activity led to a substantial increase in ADH2 expression under glucose-repressed conditions. Thus, while cAPK controls ADH2 expression and ADR1 is required for this control, cAPK acts by a mechanism that is independent of effects on ADR1 Ser-230. It was also observed that deletion of the ADR1c region resulted in an ADR1c phenotype. The ADR1c region is, therefore, involved in maintaining ADR1 in an inactive form. ADR1c mutations may block the binding of a repressor to ADR1 or alter the structure of ADR1 so that transcriptional activation regions become unmasked.


Sign in / Sign up

Export Citation Format

Share Document