scholarly journals Mechanistic origin of the sigmoidal rate behaviour of glucokinase

1986 ◽  
Vol 233 (2) ◽  
pp. 347-350 ◽  
Author(s):  
G Pettersson

Model studies are presented which demonstrate that reactions proceeding by a random ternary-complex mechanism may exhibit most pronounced deviations from Michaelis-Menten kinetics even if the reaction is effectively ordered with respect to net reaction flow. In particular, the kinetic properties and reaction flow characteristics of glucokinase can be accounted for in such terms. It is concluded that insufficient evidence has been presented to support the idea that glucokinase operates by a ‘mnemonical’ type of mechanism involving glucose binding to distinct conformational states of free enzyme. The sigmoidal rate behaviour of glucokinase can presently be more simply explained in terms of glucose binding to differently ligated states of the enzyme.

2013 ◽  
Vol 135 (16) ◽  
pp. 6192-6199 ◽  
Author(s):  
Yukiko Hayashi ◽  
Stefano Santoro ◽  
Yuki Azuma ◽  
Fahmi Himo ◽  
Takashi Ohshima ◽  
...  

Synapse ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 144-150 ◽  
Author(s):  
Christina Egan ◽  
Ellinor Grinde ◽  
Ann Dupre ◽  
Bryan L. Roth ◽  
Michael Hake ◽  
...  

1998 ◽  
Vol 332 (3) ◽  
pp. 633-642 ◽  
Author(s):  
Alejandro TOVAR-MÉNDEZ ◽  
Rogelio RODRÍGUEZ-SOTRES ◽  
Dulce M. LÓPEZ-VALENTÍN ◽  
Rosario A. MUÑOZ-CLARES

To study the effects of phosphoenolpyruvate (PEP) and Mg2+ on the activity of the non-phosphorylated and phosphorylated forms of phosphoenolpyruvate carboxylase (PEPC) from Zea maysleaves, steady-state measurements have been carried out with the free forms of PEP (fPEP) and Mg2+ (fMg2+), both in a near-physiological concentration range. At pH 7.3, in the absence of activators, the initial velocity data obtained with both forms of the enzyme are consistent with the exclusive binding of MgPEP to the active site and of fPEP to an activating allosteric site. At pH 8.3, and in the presence of saturating concentrations of glucose 6-phosphate (Glc6P) or Gly, the free species also combined with the active site in the free enzyme, but with dissociation constants at least 35-fold that estimated for MgPEP. The latter dissociation constant was lowered to the same extent by saturating Glc6P and Gly, to approx. one-tenth and one-sixteenth in the non-phosphorylated and phosphorylated enzymes respectively. When Glc6P is present, fPEP binds to the active site in the free enzyme better than fMg2+, whereas the metal ion binds better in the presence of Gly. Saturation of the enzyme with Glc6P abolished the activation by fPEP, consistent with a common binding site, whereas saturation with Gly increased the affinity of the allosteric site for fPEP. Under all the conditions tested, our results suggest that fPEP is not able to combine with the allosteric site in the free enzyme, i.e. it cannot combine until after MgPEP, fPEP or fMg2+ are bound at the active site. The physiological role of Mg2+ in the regulation of the enzyme is only that of a substrate, mainly as part of the MgPEP complex. The kinetic properties of maize leaf PEPC reported here are consistent with the enzyme being well below saturation under the physiological concentrations of fMg2+ and PEP, particularly during the dark period; it is therefore suggested that the basal PEPC activity in vivois very low, but highly responsive to even small changes in the intracellular concentration of its substrate and effectors.


2006 ◽  
Vol 188 (12) ◽  
pp. 4424-4430 ◽  
Author(s):  
Pascal D. Fortin ◽  
Geoff P. Horsman ◽  
Hao M. Yang ◽  
Lindsay D. Eltis

ABSTRACT BphK is a glutathione S-transferase of unclear physiological function that occurs in some bacterial biphenyl catabolic (bph) pathways. We demonstrated that BphK of Burkholderia xenovorans strain LB400 catalyzes the dehalogenation of 3-chloro 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), compounds that are produced by the cometabolism of polychlorinated biphenyls (PCBs) by the bph pathway and that inhibit the pathway's hydrolase. A one-column protocol was developed to purify heterologously produced BphK. The purified enzyme had the greatest specificity for 3-Cl HOPDA (k cat/Km , ∼104 M−1 s−1), which it dechlorinated approximately 3 orders of magnitude more efficiently than 4-chlorobenzoate, a previously proposed substrate of BphK. The enzyme also catalyzed the dechlorination of 5-Cl HOPDA and 3,9,11-triCl HOPDA. By contrast, BphK did not detectably transform HOPDA, 4-Cl HOPDA, or chlorinated 2,3-dihydroxybiphenyls. The BphK-catalyzed dehalogenation proceeded via a ternary-complex mechanism and consumed 2 equivalents of glutathione (GSH) (Km for GSH in the presence of 3-Cl HOPDA, ∼0.1 mM). A reaction mechanism consistent with the enzyme's specificity is proposed. The ability of BphK to dehalogenate inhibitory PCB metabolites supports the hypothesis that this enzyme was recruited to facilitate PCB degradation by the bph pathway.


2002 ◽  
Vol 184 (15) ◽  
pp. 4096-4103 ◽  
Author(s):  
Yong Ge ◽  
Frédéric H. Vaillancourt ◽  
Nathalie Y. R. Agar ◽  
Lindsay D. Eltis

ABSTRACT Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe2S2 centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 ± 1 μM, k cat = 3.9 ± 0.2 s−1, and K m O2 = 16 ± 2 μM (100 mM sodium phosphate, pH 7.0; 25°C), where K m O2 represents the K m for O2 and KmA represents the K m for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate ≃ 3-chlorobenzoate > p-toluate ≃ 4-chlorobenzoate ≫ o-toluate ≃ 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O2 utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O2 utilization, with >10 times more O2 being consumed than benzoate. However, the apparent K m of TADO for these benzoates was >100 μM, indicating that they do not effectively inhibit the turnover of good substrates.


1988 ◽  
Vol 21 (2) ◽  
pp. 97-105
Author(s):  
Cz.M. Rodkiewicz ◽  
S. Tokarzewski ◽  
J.S. Kennedy ◽  
J. Nielubowicz

Biochemistry ◽  
2003 ◽  
Vol 42 (23) ◽  
pp. 7003-7012 ◽  
Author(s):  
Barnali N. Chaudhuri ◽  
Stephanie C. Lange ◽  
Rebecca S. Myers ◽  
V. Jo Davisson ◽  
Janet L. Smith

2021 ◽  
Vol 244 ◽  
pp. 05014
Author(s):  
Gennady Gladkov ◽  
Konstantin Morgunov ◽  
Yuri Ivanovsky

The results of laboratory modeling of the influence of the bridge crossing supports erected during the construction of the highway near the existing railway bridge on the flow characteristics in the channel of the Neva River are presented. Modeling was carried out for two options for the location of the new bridge supports relative to the existing bridge structures. The limits of changes in the characteristics of the river flow are taken into account - the maximum, minimum and residual flows and benchmarks of the water level in the channel. Studies have shown that the construction of the designed bridge supports in the channel does not cause significant changes in the flow structure. There is a redistribution of the flow rate in the sections of the existing and designed bridges. The average velocities in the navigable span of the existing bridge are somewhat reduced when new supports are built. The velocity diagram is aligned along the width of the central and side spans, and a vortex wake is more clearly formed in the area behind the supports.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Seung Oh Lee ◽  
Seung Ho Hong

Little efforts have been made to the value of laboratory model study in closing the gap between results from idealized laboratory experiments and those from field data. Thus, at first, three bridge sites were selected and equipped with fathometers to find the bed elevation change in the vicinity of bridge pier over time. After and during the flooding, the stream flow variables and their bathymetry were measured using current viable technologies at the field. Then, to develop and suggest a laboratory modeling techniques, full three-dimensional physical models including measured river bathymetry and bridge geometry were designed and fabricated in a laboratory based on the scale ratio except for the sediment size, and the laboratory results were compared with the field measurements. Size of uniform sediment was carefully selected and used in the laboratory to explore the scale effect caused by sediment size scaling. The comparisons between laboratory results and field measurements show that the physical models successfully reproduced the flow characteristics and the scour depth around bridge foundations. With respect to the location of the maximum scour depth, they are not consistent with the results as in the previous research. Instead of occurring at the nose of each pier, the maximum scour depths are located further downstream of each pier column in several experimental runs because of the combination of complex pier bent geometry and river bathymetry, and the resulting unique flow motions around the pier bent.


Sign in / Sign up

Export Citation Format

Share Document