scholarly journals Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat

1986 ◽  
Vol 233 (3) ◽  
pp. 779-788 ◽  
Author(s):  
J D Hayes ◽  
T J Mantle

The glutathione S-transferases are dimeric enzymes whose subunits can be defined by their mobility during sodium dodecyl sulphate/polyacrylamide-gel electrophoresis as Yf (Mr 24,500), Yk (Mr 25,000), Ya (Mr 25,500), Yn (Mr 26,500), Yb1 (Mr 27,000), Yb2 (Mr 27,000) and Yc (Mr 28,500) [Hayes (1986) Biochem. J. 233, 789-798]. Antisera were raised against each of these subunits and their specificities assessed by immuno-blotting. The transferases in extrahepatic tissues were purified by using, sequentially, S-hexylglutathione and glutathione affinity chromatography. Immune-blotting was employed to identify individual transferase polypeptides in the enzyme pools from various organs. The immuno-blots showed marked tissue-specific expression of transferase subunits. In contrast with other subunits, the Yk subunit showed poor affinity for S-hexylglutathione-Sepharose 6B in all tissues examined, and subsequent use of glutathione and glutathione affinity chromatography. Immuno-blotting was employed to identify a new cytosolic polypeptide, or polypeptides, immunochemically related to the Yk subunit but with an electrophoretic mobility similar to that of the Yc subunit; high concentrations of the new polypeptide(s) are present in colon, an organ that lacks Yc.

1983 ◽  
Vol 215 (3) ◽  
pp. 617-625 ◽  
Author(s):  
T Friedberg ◽  
U Milbert ◽  
P Bentley ◽  
T M Guenther ◽  
F Oesch

A hitherto unknown cytosolic glutathione S-transferase from rat liver was discovered and a method developed for its purification to apparent homogeneity. This enzyme had several properties that distinguished it from other glutathione S-transferases, and it was named glutathione S-transferase X. The purification procedure involved DEAE-cellulose chromatography, (NH4)2SO4 precipitation, affinity chromatography on Sepharose 4B to which glutathione was coupled and CM-cellulose chromatography, and allowed the isolation of glutathione S-transferases X, A, B and C in relatively large quantities suitable for the investigation of the toxicological role of these enzymes. Like glutathione S-transferase M, but unlike glutathione S-transferases AA, A, B, C, D and E, glutathione S-transferase X was retained on DEAE-cellulose. The end product, which was purified from rat liver 20 000 g supernatant about 50-fold, as determined with 1-chloro-2,4-dinitrobenzene as substrate and about 90-fold with the 1,2-dichloro-4-nitrobenzene as substrate, was judged to be homogeneous by several criteria, including sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, isoelectric focusing and immunoelectrophoresis. Results from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration indicated that transferase X was a dimer with Mr about 45 000 composed of subunits with Mr 23 500. The isoelectric point of glutathione S-transferase X was 6.9, which is different from those of most of the other glutathione S-transferases (AA, A, B and C). The amino acid composition of transferase X was similar to that of transferase C. Immunoelectrophoresis of glutathione S-transferases A, C and X and precipitation of various combinations of these antigens by antisera raised against glutathione S-transferase X or C revealed that the glutathione S-transferases A, C and X have different electrophoretic mobilities, and indicated that transferase X is immunologically similar to transferase C, less similar to transferase A and not cross-reactive to transferases B and E. In contrast with transferases B and AA, glutathione S-transferase X did not bind cholic acid, which, together with the determination of the Mr, shows that it does not possess subunits Ya or Yc. Glutathione S-transferase X did not catalyse the reaction of menaphthyl sulphate with glutathione, and was in this respect dissimilar to glutathione S-transferase M; however, it conjugated 1,2-dichloro-4-nitrobenzene very rapidly, in contrast with transferases AA, B, D and E, which were nearly inactive towards that substrate.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 227 (2) ◽  
pp. 457-465 ◽  
Author(s):  
P K Stockman ◽  
G J Beckett ◽  
J D Hayes

The purification of a hybrid glutathione S-transferase (B1 B2) from human liver is described. This enzyme has an isoelectric point of 8.75 and the B1 and B2 subunits are distinguishable immunologically and are ionically distinct. Hybridization experiments demonstrated that B1 B1 and B2 B2 could be resolved by CM-cellulose chromatography and have pI values of 8.9 and 8.4 respectively. Transferase B1 B2, and the two homodimers from which it is formed, are electrophoretically and immunochemically distinct from the neutral enzyme (transferase mu) and two acidic enzymes (transferases rho and lambda). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis demonstrated that B1 and B2 both have an Mr of 26 000, whereas, in contrast, transferase mu comprises subunits of Mr 27 000 and transferases rho and lambda both comprise subunits of Mr 24 500. Antisera raised against B1 or B2 monomers did not cross-react with the neutral or acidic glutathione S-transferases. The identity of transferase B1 B2 with glutathione S-transferase delta prepared by the method of Kamisaka, Habig, Ketley, Arias & Jakoby [(1975) Eur. J. Biochem. 60, 153-161] has been demonstrated, as well as its relationship to other previously described transferases.


1979 ◽  
Vol 177 (1) ◽  
pp. 21-28 ◽  
Author(s):  
B D Hames ◽  
B A Hodson

Amoebae of the slime mould Dictyostelium discoideum AX2 possess only low UDP-glucose pyrophosphorylase activity when grown on autoclaved Klebsiella aerogenes (approx. 30 units/mg of protein), but accumulate the enzyme to approx. 150-200 units/mg of protein during vegetative growth in axenic medium. The vegetative accumulation of UDP-glucose pyrophosphorylase by axenically grown cells is prevented if autoclaved K. aerogenes are included in the axenic medium, suggesting the absence of a specific inducer. Affinity chromatography using anti-(UDP-glucose pyrophosphorylase) antibody and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicate that the enzyme accumulated during axenic growth and that normally accumulated during development are immunologically cross-reactive and that both are composed of two subunits with mol.wts. 55,600 and 57,500 present in approximately equal amounts in the active enzyme.


1981 ◽  
Vol 196 (2) ◽  
pp. 653-656 ◽  
Author(s):  
E J Wood ◽  
J Bonaventura

Total RNA was isolated from cyanoblast-containing tissue taken from behind the compound eye of the horseshoe crab, Limulus polyphemus. Poly(A)-containing RNA separated from this by affinity chromatography on oligo(dT)-cellulose was translated in the rabbit reticulocyte haemolysate system in the presence of L-[35S]methionine. By using an antiserum to Limulus haemocyanin, polypeptides were isolated from the translation products which had a similar mobility to the authentic Limulus haemocyanin polypeptides as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis.


1980 ◽  
Vol 185 (1) ◽  
pp. 203-210 ◽  
Author(s):  
L Barbieri ◽  
M Zamboni ◽  
L Montanaro ◽  
S Sperti ◽  
F Stirpe

1. The subunits were isolated of modeccin (subsequently referred to as modeccin 4B), the toxin purified from the roots of Adenia digitata by affinity chromatography on Sepharose 4B [Gasperi-Campani, Barbieri, Lorenzoni, Montanaro, Sperti, Bonetti & Stirpe (1978) Biochem J. 174, 491-496]. They are an A subunit (mol.wt. 26 000), which inhibits protein synthesis, and a B subunit (mol.wt. 31 000), which binds to cells. Both sununits, as well as intact modeccin, gave single bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, but showed some heterogeneity on isoelectric focusing and on polyacrylamide-gel electrophoresis at pH 9.5. 2. A second form of modeccin, not retained by Sepharose 4B, was purified by affinity chromatography on acid-treated Sepharose 6B: this form is subsequently termed modeccin 6B 3. Modeccin 6B has a molecular weight indistinguishable from that of modeccin 4B, and consists of two subunits of mol.wts. 27 000 and 31 000, joined by a disulphide bond. The subunits were not isolated because of their high insolubility in the absence of sodium dodecyl sulphate. 4. As compared with modeccin 4B, modeccin 6B is slightly less toxic to animals, does not agglutinate erythrocytes, and is a more potent inhibitor of protein synthesis in a lysate of rabbit reticulocytes, giving 50% inhibition at the concentration of 0.31 microgram/ml.


1982 ◽  
Vol 207 (3) ◽  
pp. 485-495 ◽  
Author(s):  
S M Parkin ◽  
B K Speake ◽  
D S Robinson

Lipoprotein lipase (EC 3.1.1.34) extracted from adipose tissue of glucose-fed rats with 5 mM-sodium barbital, pH 7.5, containing 20% (v/v) glycerol and 0.1% (v/v) Triton X-100, was partially purified by affinity chromatography on heparin linked to Sepharose 4B. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the partially purified enzyme preparation revealed the presence of two major Coomassie-staining bands (mol.wts. 62 000 and 56 000) as well as a number of minor bands. Treatment of partially purified enzyme with [1,3-3H]di-isopropyl fluorophosphate resulted in the incorporation of radiolabel into the band of mol.wt. 56 000, but not into the band of mol.wt. 62 000. Both the amount of the 56 000-mol.wt. polypeptide and the incorporation of [1,3-3H]di-isopropyl fluorophosphate into this band were greatly reduced in the enzyme preparations isolated from adipose tissue of 48 h-starved rats. whereas the amount of the 62 000-mol.wt. polypeptide was unaffected by starvation. Purification of lipoprotein lipase from adipose tissue of glucose-fed rats was also carried out using affinity chromatography on Sepharose 4B linked to heparin with low affinity for antithrombin-III. This procedure resulted in the presence of a single band of mol.wt. 56 000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. These results suggest that the polypeptide of mol.wt. 56 000 corresponds to the subunit of lipoprotein lipase, whereas the 62 000-mol.wt. polypeptide probably represents antithrombin-III.


1981 ◽  
Vol 194 (1) ◽  
pp. 209-214 ◽  
Author(s):  
R Townsend ◽  
P Stahl

A rat liver mannan-binding protein was isolated by affinity chromatography on invertase–Sepharose by a modification of the method of Kawasaki, Etoh & Yamashina [(1978) Biochem. Biophys. Res. Commun. 81, 1018-1024] and by a new method involving chromatography on mannose-Sepharose. The binding protein appears as a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with an apparent mol.wt. of approx. 30000. Binding of 125I-labelled mannan is saturable and inhibited by mannose, N-acetylglucosamine, or L-fucose but not by galactose or mannose 6-phosphate. Neoglycoproteins containing mannose, N-acetylglucosamine, or L-fucose, but not galactose, are inhibitory. The neoglycoproteins are 10000-fold more effective (based on moles of sugar) than are free monosaccharides as inhibitors. 125I-labelled mannan binding to the binding protein is calcium-dependent.


1983 ◽  
Vol 215 (3) ◽  
pp. 581-588 ◽  
Author(s):  
J D Hayes ◽  
J Chalmers

A purification scheme is described for the neutral glutathione S-transferases of rat liver. Discontinuous sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that one of these enzymes contains a previously unidentified subunit, which has a molecular mass of 23 000 Da and has been designated Yn. Bile acids inhibited the activity of all the basic and neutral transferases investigated, but marked differences in the effects of bile acids on individual enzymes were observed. The activity of each transferase was inhibited more by lithocholate 3-sulphate than by chenodeoxycholate, which in turn was more inhibitory than cholate. The enzymes that were most sensitive to cholate inhibition were not found to be as readily inhibited as other transferases by chenodeoxycholate or lithocholate 3-sulphate. Conversely, the activity of transferase AA was more resistant to cholate, chenodeoxycholate and lithocholate 3-sulphate inhibition than was any of the other enzymes studied.


1984 ◽  
Vol 221 (1) ◽  
pp. 33-41 ◽  
Author(s):  
D D Dao ◽  
C A Partridge ◽  
A Kurosky ◽  
Y C Awasthi

Anionic glutathione S-transferases were purified from human lung and placenta. Chemical and immunochemical characterization, including polyacrylamide-gel electrophoresis, gave strong evidence that the anionic lung and placental enzymes are chemically similar, if not identical, proteins. The electrophoretic mobilities of both proteins were identical in conventional alkaline gels as well as in gels containing sodium dodecyl sulphate. Gel filtration of the intact active enzyme established an Mr value of 45000; however, with sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under dissociating conditions a subunit Mr of 22500 was obtained. Amino acid sequence analysis of the N-terminal region of the placental enzyme revealed a single polypeptide sequence identical with that of lung. Results obtained from immunoelectrophoresis, immunotitration, double immunodiffusion and rocket immunoelectrophoresis also indicated the anionic lung and placental enzymes to be closely similar. The chemical similarity of these two proteins was further supported by protein compositional analysis and fragment analysis after chemical hydrolysis. Immunochemical comparison of the anionic lung and placental enzymes with human liver glutathione S-transferases revealed cross-reactivity with the anionic omega enzyme, but no cross-reactivity was detectable with the cationic enzymes. Comparison of the N-terminal region of the human anionic enzyme with reported sequences of rat liver glutathione S-transferases gave strong evidence of chemical similarity, indicating that these enzymes are evolutionarily related. However, computer analysis of the 30-residue N-terminal sequence did not show any significant chemical similarity to any other reported protein sequence, pointing to the fact that the glutathione S-transferases represent a unique class of proteins.


1984 ◽  
Vol 221 (2) ◽  
pp. 445-452 ◽  
Author(s):  
A D Gounaris ◽  
M A Brown ◽  
A J Barrett

Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and ‘rocket’ immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated.


Sign in / Sign up

Export Citation Format

Share Document