scholarly journals The catabolism of plasmenylcholine in the guinea pig heart

1986 ◽  
Vol 236 (2) ◽  
pp. 475-480 ◽  
Author(s):  
G Arthur ◽  
L Page ◽  
T Mock ◽  
P C Choy

The hydrolysis of the alkenyl bonds of plasmenylcholine and plasmenylethanolamine by plasmalogenase, followed by hydrolysis of the resultant lysophospholipid by lysophospholipase, has been postulated as the major pathway for the catabolism of these plasmalogens. However, the postulation was based solely on the presence of plasmalogenase activity towards plasmenylethanolamine and plasmenylcholine in the brain. In this study we have demonstrated the absence of plasmalogenase activity for plasmenylcholine in the guinea pig heart under a wide range of experimental conditions. Plasmenylcholine was hydrolysed by phospolipase A2 activities in cardiac microsomal, mitochondrial and cytosolic fractions. Phospholipase A2 activities in these fractions had an alkaline pH optimum and were enhanced by Ca2+. The enzymes also displayed high specificity for plasmenylcholine with linoleoyl or oleoyl at the C-2 position. Lysoplasmalogenase activity for lysoplasmenycholine was also detected and characterized in the microsomal and mitochondrial fractions. Since the cardiac plasmalogenase is only active towards plasmenylethanolamine but not plasmenylcholine, the catabolism of these two plasmalogens must be different from each other. We postulate that the major pathway for the catabolism of plasmenycholine involves the hydrolysis of the C-2 fatty acid by phospholipase A2, and hydrolysis of the vinyl ether group of the resultant lysoplasmenylcholine by lysoplasmalogenase.

1991 ◽  
Vol 275 (2) ◽  
pp. 393-398 ◽  
Author(s):  
K Badiani ◽  
G Arthur

We have recently described a lysophospholipase A2 activity in guinea-pig heart microsomes that hydrolyses 2-acyl-sn-glycero-3-phosphocholine (2-acyl-GPC). The presence of a similar activity that hydrolyses 2-acyl-sn-glycero-3-phosphoethanolamine (2-acyl-GPE) was not known. In this study, a lysophospholipase A2 activity in guinea-pig heart microsomes that hydrolyses 2-acyl-GPE has been characterized. The enzyme did not require Ca2+ for activity and exhibited a high specificity for 2-arachidonoyl-GPE and 2-linoleoyl-GPE over 2-oleoyl-GPE and 2-palmitoyl-GPE. The specificity for these unsaturated substrates was observed in the presence and absence of detergents. Selective hydrolysis of 2-arachidonoyl-GPE over 2-palmitoyl-GPE was observed when equimolar quantities of the two substrates were incubated with the enzyme. There was no preferential hydrolysis of either 2-linoleoyl- or 2-arachidonoyl-GPE when presented individually or as a mixture. Significant differences in the characteristics of 2-acyl-GPE-hydrolysing and 2-acyl-GPC-hydrolysing activities included differences in their optimum pH, the effect of Ca2+ and their acyl specificities. Taken together, these results suggest that the two activities are catalysed by different enzymes. 2-Acyl-GPE lysophospholipase activity with a preference for 2-arachidonoyl-GPE over 2-oleoyl-GPE was observed in guinea-pig brain, liver, kidney and lung microsomes. Lysophospholipase A1 activity that catalyses the hydrolysis of 1-acyl-GPE was also present in guinea-pig heart microsomes and had different characteristics from the 2-acyl-GPE-hydrolysing activity, including a preference for saturated over unsaturated substrates. The 2-acyl-GPE lysophospholipase A2 activity appeared to be distinct from Ca(2+)-independent phospholipase A2. The characteristics of the 2-acyl-GPE lysophospholipase A2 suggest it could play a role in the selective release of arachidonic and linoleic acids for further metabolism in cells.


1992 ◽  
Vol 288 (3) ◽  
pp. 965-968 ◽  
Author(s):  
K Badiani ◽  
X Lu ◽  
G Arthur

We have recently characterized lysophospholipase A2 activities in guinea-pig heart microsomes and postulated that these enzymes act sequentially with phospholipases A1 to release fatty acids selectively from phosphatidylcholine (PC) and phosphatidylethanolamine, thus providing an alternative route to the phospholipase A2 mode of release. In a further investigation of the postulated pathway, we have characterized the PC-hydrolysing phospholipase A1 in guinea-pig heart microsomes. Our results show that the enzyme may have a preference for substrates with C16:0 over C18:0 at the sn-1 position. In addition, although the enzyme cleaves the sn-1 fatty acid, the rate of hydrolysis of PC substrates with C16:0 at the sn-1 position was influenced by the nature of the fatty acid at the sn-2 position. The order of decreasing preference was C18:2 > C20:4 = C18:1 > C16:0. The hydrolyses of the molecular species were differentially affected by heating at 60 degrees C. An investigation into the effect of nucleotides on the activity of the enzyme showed that guanosine 5′-[gamma-thio]triphosphate (GTP[S]) inhibited the hydrolysis of PC by phospholipase A1 activity, whereas GTP, guanosine 5′-[beta-thio]diphosphate (GDP[S]), GDP, ATP and adenosine 5′-[gamma-thio]triphosphate (ATP[S]) did not affect the activity. The inhibitory effect of GTP[S] on phospholipase A1 activity was blocked by preincubation with GDP[S]. A differential effect of GTP[S] on the hydrolysis of different molecular species was also observed. Taken together, the results of this study suggest the presence of more than one phospholipase A1 in the microsomes with different substrate specificities, which act sequentially with lysophospholipase A2 to release linoleic or arachidonic acid selectively from PC under resting conditions. Upon stimulation and activation of the G-protein, the release of fatty acids would be inhibited.


1984 ◽  
Vol 247 (4) ◽  
pp. G427-G431 ◽  
Author(s):  
J. R. Moore ◽  
B. S. Turner ◽  
J. T. LaMont

We studied the effects of hydrocortisone, an inhibitor of phospholipase A2, on the secretion of mucin and release of prostaglandins from guinea pig gallbladder explants. We measured mucin using [3H]glucosamine as a precursor and prostaglandins by radioimmunoassay of 6-keto-prostaglandin F1 alpha. Mucin secretion and prostaglandin release were studied under basal conditions and after arachidonate stimulation. Hydrocortisone sodium succinate reversibly inhibited basal secretion of mucin by 24% at 10(-5) M (P less than 0.05 compared with control) and 34% at 10(-4) M (P less than 0.01). Hydrocortisone, 10(-4) M, also reversibly inhibited arachidonate-stimulated secretion of mucin (P less than 0.01 compared with controls incubated with arachidonate alone). Release of prostaglandin F1 alpha was significantly inhibited by hydrocortisone under basal (P less than 0.01) and arachidonate-stimulated (P less than 0.01) conditions. The inhibitory effect of hydrocortisone was mediated by inhibition of hydrolysis of arachidonate from membrane phospholipids, suggesting that exogenous arachidonate is incorporated into membrane phospholipids prior to conversion to prostaglandins.


1987 ◽  
Vol 65 (10) ◽  
pp. 860-868 ◽  
Author(s):  
Monika Wientzek ◽  
Ricky Y. K. Man ◽  
Patrick C. Choy

The aims of this study were to (i) elucidate the biosynthetic pathways for the formation of plasmenylcholine in the mammalian heart and (ii) investigate whether the control of choline glycerophospholipid production is different in hearts with high plasmenylcholine content. Guinea pig hearts were used throughout this study, since 34% of the cardiac choline glycerophospholipids in this species is present in the plasmenylcholine form. By perfusion of the guinea pig heart in the Langendorff mode with labeled choline, we demonstrated that the majority of plasmenylcholine in the heart was synthesized via the CDP-choline pathway. The ability of the heart to form plasmenylcholine from CDP-choline and 1-alkenyl-2-acylglycerol was also shown. We postulate that 1-alkenyl-2-acylglycerol in the guinea pig heart might originate from the hydrolysis of plasmenylethanolamine. In mammalian liver and other tissues, the CDP-choline pathway is the major pathway for phosphatidylcholine biosynthesis and the rate-limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase. The results obtained from the present study support this supposition. In addition, evidence was obtained indicating that phosphorylation of choline by choline kinase in the CDP-choline pathway may also be rate limiting. Although the involvement of choline kinase as a rate-limiting enzyme in the CDP-choline pathway has been shown in a number of cell cultures, the rate-limiting role of this enzyme in intact mammalian organs has not been previously reported. The rationale for the presence of more than one rate-limiting step in the CDP-choline pathway in the guinea pig heart remains undefined.


1973 ◽  
Vol 132 (2) ◽  
pp. 233-248 ◽  
Author(s):  
O. S. Vyvoda ◽  
C. E. Rowe

1. Combined guinea-pig cortex and cerebellum was shown to contain triglyceride lipase, diglyceride lipase and monoglyceride lipase, which were assayed by the release of [1-14C]palmitate from [1-14C]palmitoylglycerol esters. Triglyceride lipase and diglyceride lipase were found in all particulate fractions. 2. With osmotically ruptured synaptosomes the rates of release of palmitate from glyceryl tripalmitate and glyceryl dipalmitate were 7–25μmol/h per g of protein and 0.18–0.69mmol/h per g of protein respectively. The logarithm of the rate of hydrolysis of glyceryl monopalmitate increased linearly with the logarithm of protein concentration. The pH optima of triglyceride lipase and diglyceride lipase were between 7 and 8. The pH optimum for monoglyceride lipase was approx. 8. 3. Triglyceride lipase and diglyceride lipase of osmotically ruptured synaptosomes were stimulated by noradrenaline, 5-hydroxytryptamine and adrenaline. Triglyceride lipase of isolated synaptic membranes was stimulated by 0.01–1mm-noradrenaline. Aging of membranes at 0°C decreased activity, which could still be stimulated by noradrenaline. Diglyceride lipase of isolated membranes was stimulated by 1μm–1mm-noradrenaline. The activity of triglyceride lipase in isolated synaptic vesicles was diminished by 1mm-5-hydroxytryptamine.


1990 ◽  
Vol 68 (9) ◽  
pp. 1090-1095
Author(s):  
Ketan Badiani ◽  
Leona Page ◽  
Gilbert Arthur

Although both 2-acyl-sn-glycero-3-phosphocholine and 1-acyl-sn-glycero-3-phosphocholine may be produced from phosphatidylcholine hydrolysis, studies on the former have lagged behind that of the latter. In this study a lysophospholipase A2 that hydrolyses 2-acyl-sn-glycero-3-phosphocholine has been characterized in guinea pig heart mitochondria. The lysophospholipase A2 activity was not dependent on Ca2+ and was inhibited differentially by saturated and unsaturated fatty acids. This lysophospholipase A2 activity was able to discriminate among different molecular species of 2-acyl-sn-glycero-3-phosphocholines when they were presented individually or in pairs. The order of decreasing rates of hydrolysis of different molecular species of 2-lysophosphatidylcholines, when the substrates were presented singly, was 18:2 > 20:4 > 18:1 > 16:0. A differential inhibition of the rate of hydrolysis of the individual substrates was observed when the substrates were presented in pairs. The degree of inhibition was dependent on the molar ratio of the mixed substrates. The characteristics of the enzyme suggest that involvement in the selective release of fatty acids from mitochondrial phosphatidylcholine would depend on a high selectivity of phospholipase A1 for different molecular species of phosphatidylcholine. A lysophospholipase A1 activity was also characterized in the mitochondria with a distinct acyl specificity from the lysophospholipase A2. Other characteristics of the two lysophospholipases suggest that the two reactions are not catalysed by the same enzyme.Key words: lysophospholipases, mitochondria, fatty acid relase, heart.


1975 ◽  
Vol 148 (2) ◽  
pp. 197-208 ◽  
Author(s):  
R J Gullis ◽  
C E Rowe

1. The distribution of the hydrolyses of phosphatidylcholine by phospholipase A2 and phospholipase A1, and the hydrolysis of lysophosphatidylcholine by lysophospholipase, in subcellular and subsynaptosomal fractions of cerebral cortices of guinea-pig brain, was determined. 2. Noradrenaline stimulated hydrolysis by phospholipase A2 in whole synaptosomes, synaptic membranes and fractions containing synaptic vesicles. 3. Stimulation of hydrolysis by phospholipase A2 in synaptic membranes by noradrenaline was enhanced by CaCl2, and by a mixture of ATP and MgCl2. The optimum concentration of CaCl2, in the presence of ATP and MgCl2, for stimulation by 10 muM-noradrenaline was in the range 1-10muM. The optimum concentration for ATP-2MgCl2 in the presence of 1 muM-CaCl2 was in the range 0.1-1mM. 4. Hydrolysis by phospholipase A2 of synaptic membranes was also stimulated by acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine), histamine, psi-aminobutyric acid, glutamic acid and aspartic acid. With appropriate concentrations of cofactors, sigmoidal dose-response curves were obtained, half-maximum stimulations being obtained with concentrations of stimulant in the range 0.1-1muM. 5. Taurine also stimulated hydrolysis of phosphatidylcholine by phospholipase A2. There were only slight stimulations with methylamine, ethylenediamine or spermidine. No stimulation was obtained with glucagon.


1995 ◽  
Vol 268 (6) ◽  
pp. H2440-H2459 ◽  
Author(s):  
C. Nordin ◽  
Z. Ming

We tested the ability of a computer model of transmembrane current and intracellular Ca2+ flux in the isolated guinea pig myocyte (Nordin, C., Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H2117-H2136, 1993) to reproduce data from prior experimental studies and new data presented in this study regarding the behavior of early afterdepolarizations induced by constant inward current, a response closely related to the effect of localized injury currents in damaged myocardial syncytia. The goals of the study were to confirm the model's capacity to reproduce relevant experimental responses for which it was not originally designed and to analyze the mechanisms underlying the experimental phenomena. Under normal conditions, current-induced early afterdepolarizations in the model developed only from membrane potentials associated with L-type Ca2+ channel window current, and the magnitude of upstrokes was unaffected by blockade of either delayed rectifier K+ current or sarcoplasmic reticulum Ca2+ release. After Ca2+ loading secondary to either reduced extracellular [K+] or inhibition of Na(+)-K(+)-adenosinetriphosphatase activity, the threshold potential for current-induced early afterdepolarizations in the model, as with experimental myocytes, shifted to membrane potentials negative to the threshold potential for Ca2+ channel activation. Upstrokes were initiated by inward currents generated by electrogenic Na/Ca exchange following oscillatory Ca2+ release from the sarcoplasmic reticulum. New experiments presented in this study demonstrate that bursts of rapid depolarizing stimulations terminate current-induced early afterdepolarizations. Termination is caused by transient hyperpolarizations, which increase as a function of number or duration of stimulations, and if strong enough, cross the all-or-none threshold and lead to full repolarization. This experimental response was accurately simulated by the model through interactions that led to activation of delayed rectifier current, inactivation of Ca2+ channel current, and a reduction in inward Na/Ca exchange current secondary to altered intracellular Ca2+ cycling. We confirm that the model accurately simulates a wide range of responses beyond its original experimental constraints and suggest that current-induced early afterdepolarizations are initiated and terminated by complex processes that vary with specific experimental conditions and involve multiple currents.


1974 ◽  
Vol 138 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Barry Halliwell

1. Spinach (Spinacia oleracea L.) leaf extracts catalyse the oxidation of formate to CO2. 2. Two enzymic systems are responsible for this oxidation, the peroxidatic action of catalase (EC 1.11.1.6) and NAD-dependent formate dehydrogenase (EC 1.2.1.2). 3. Formate dehydrogenase is mainly, if not exclusively, located in the mitochondria. This enzyme has a pH optimum of 6–6.5 and a Km for formate of 1.7mm in the presence of 1 mm-NAD+. 4. Peroxidatic action of catalase is presumed to take place in peroxisomes, since these seem to be the subcellular site of catalase. Formate oxidation at pH5 by chloroplast and mitochondrial fractions is due to their ability to generate H2O2 and the presence of contaminating catalase. 5. During photorespiration, peroxidatic oxidation of formate by catalase can occur over a wide range of pH values, but the rate of this reaction is probably controlled by the concentration of formate present, to an extent dependent on the pH.


1984 ◽  
Vol 62 (12) ◽  
pp. 1269-1274 ◽  
Author(s):  
Stanley W. Tam ◽  
Ricky Y. K. Man ◽  
Patrick C. Choy

The hydrolysis of acyl esters in phosphatidylcholine and phosphatidylethanolamine by phospholipase A in hamster heart subcellular fractions was investigated. Phosphatidylcholine was found to be a much poorer substrate than phosphatidylethanolamine for the cardiac phospholipase A. The rate of hydrolysis of phosphatidylcholine by microsomal phospholipase A was 10-fold less than with phosphatidylethanolamine as substrate. When 1-[1-14C]palmitoyl-2-acyl phosphatidyl-[Me-3H]choline was used as substrate, both phospholipase A1 and A2 activities were detected in all subcellular fractions, but the highest specific activities for both enzymes were located in the microsomal fraction. However, phospholipase A2 activity in all hamster heart particulate fractions was three to six times higher than phospholipase A1 activity. The hydrolysis of phosphatidylcholine by microsomal phospholipase A2 displayed an alkaline pH optimum and an absolute requirement for Ca2+ or Mg2+. The enzyme also depicted high specificity towards polyunsaturated acyl groups at the C-2 position of phosphatidylcholine.


Sign in / Sign up

Export Citation Format

Share Document