scholarly journals Effects of vasopressin and La3+ on plasma-membrane Ca2+ inflow and Ca2+ disposition in isolated hepatocytes. Evidence that vasopressin inhibits Ca2+ disposition

1986 ◽  
Vol 238 (3) ◽  
pp. 793-800 ◽  
Author(s):  
B P Hughes ◽  
S E Milton ◽  
G J Barritt

Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [(Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.

1989 ◽  
Vol 257 (2) ◽  
pp. 591-598 ◽  
Author(s):  
B P Hughes ◽  
G J Barritt

1. Slowly hydrolysable analogues of GTP were introduced into hepatocytes by incubating the cells in the absence of Mg2+ and in the presence of ATP4-. Experiments using guanosine 5′-[gamma-[35S]thio]triphosphate (GTP[35S])indicated that about 50% of the GTP[S] loaded into the cells was subsequently hydrolysed. 2. In cells loaded with GTP[S] and incubated in the absence of added extracellular Ca2+ (Ca2+o), the rate of activation of glycogen phosphorylase observed after addition of 1.3 mM-Ca2+o was 250% greater than the rate observed in unloaded cells. Smaller effects (130%) were observed in cells loaded with either guanyl-5′-yl imidodiphosphate or guanosine 5-[beta-thio]diphosphate (GDP[S]). Cells loaded with adenosine 5′-[gamma-thio]triphosphate showed no increase in glycogen phosphorylase activity on addition of Ca2+o. 3. The effect of a submaximal concentration of GTP[S] on the Ca2+-induced activation of glycogen phosphorylase was additive with that of a half-maximally effective concentration of vasopressin. GTP[S] did not increase the effect of a maximally effective concentration of the hormone. 4. Cells loaded with GTP[S] exhibited an increased initial rate of 45Ca2+ exchange measured at 1.3 mM-Ca2+o. 5. GTP[S] did not affect the amount of 45Ca2+ exchanged by cells incubated at 0.1 mM-Ca2+o or the ability of vasopressin to release 45Ca2+ from these cells. 6. It is concluded that the introduction of slowly hydrolysable analogues of GTP to the liver cell cytoplasmic space stimulates the inflow of Ca2+ across the plasma membrane through a channel similar to that activated by vasopressin.


1980 ◽  
Vol 190 (3) ◽  
pp. 593-603 ◽  
Author(s):  
P H Sugden

1. The effects of external Ca2+, EGTA, ionophore A23187, CN-, dinitrophenol and iodoacetamide on the rate of protein degradation in the rat diaphragm and epitrochlearis muscles in vitro were investigated. 2. External Ca2+ increased protein degradation when compared with external EGTA. Protein degradation was further increased by Ca2+ + ionophore A23187. 3. EGTA and ionophore A23187 decreased ATP and phosphocreatine concentrations and the ATP/ADP ratio. 4. CN-, dinitrophenol and iodoacetamide decreased protein degradation, presumably by interfering with energy metabolism. 5. The effects of EGTA may be caused by disturbances in energy metabolism. The effects of ionophore A23187 cannot be readily explained by disturbances in energy metabolism. 6. Incubation of diaphragms with Ca2+ causes a rapid increase in whole-tissue Ca content. This is further stimulated by ionophore A23187. The uptake of Ca2+ may be, at least in part, into the cytoplasm because an increase in the glycogen phosphorylase activity ratio is observed. 7. A Ca2+-activated proteinase is present in rat heart and diaphragm. This enzyme may mediate in part the effects of Ca2+ described above. The apparent KA of this enzyme for Ca2+ is about 0.25 mM. 8. Because effects of ionophore A23187 cause a large increase in whole-tissue Ca content and because the Ca2+-activated proteinase has a relatively low affinity for Ca2+, it is felt that the effects of Ca2+ upon muscle proteolysis are unlikely to be of importance in steady-state protein turnover in vivo. The mechanism may, however, be important in breakdown of necrotic tissue in the living animal.


1984 ◽  
Vol 220 (2) ◽  
pp. 417-421 ◽  
Author(s):  
S B Shears ◽  
C J Kirk

Stimulation of hepatocytes with vasopressin (10 nM) in the presence of 1.25 mM extracellular Ca2+ increased glycogen phosphorylase activity 4-fold within 15s and provoked a rapid efflux of cell-associated Ca2+. Vasopressin also caused a transient increase in the Ca content of a mitochondria-rich fraction separated within seconds of hormone stimulation by a rapid fractionation technique [Shears & Kirk (1984) Biochem. J. 219, 375-382]. The Ca content of this fraction was restored to the control value within 2 min of hormone addition. These results indicate that mitochondria are not the source of the cell-associated Ca which is mobilized in the cytosol of vasopressin-stimulated hepatocytes. Rather, these organelles buffer the increase in cytosol [Ca2+] attributable to Ca mobilization from non-mitochondrial sources.


1987 ◽  
Vol 245 (1) ◽  
pp. 41-47 ◽  
Author(s):  
B P Hughes ◽  
G J Barritt

1. In isolated hepatocytes NaF increased the rate of 45Ca2+ exchange, the cytoplasmic free Ca2+ concentration ([Ca2+]i) (monitored by using quin2), and the activity of glycogen phosphorylase a in a Ca2+-dependent manner. 2. In cells previously incubated in the absence of extracellular Ca2+(Ca2+o), NaF caused a pronounced enhancement in the increases in the activity of glycogen phosphorylase and in [Ca2+]i observed when Ca2+ was subsequently added. The effect of NaF on glycogen phosphorylase activity was inhibited by verapamil and deferoxamine, and was potentiated by AlCl3. 3. The actions of NaF were associated with (a) increases in [3H]inositol polyphosphates, which were slower in onset and about half the magnitude of those induced by vasopressin, in hepatocytes labelled with [3H]inositol, and (b) enhanced rates of O2 utilization and decreased concentrations of ATP. The latter effects were not potentiated by AlCl3. 4. Preincubation of hepatocytes with vasopressin in the absence of added Ca2+o for times up to 30 min did not diminish the ability of a subsequent addition of extracellular Ca2+ to activate glycogen phosphorylase. 5. 12-O-Tetradecanoylphorbol 13-acetate had little effect on 45Ca2+ exchange and did not enhance the activation by Ca2+o of phosphorylase in hepatocytes incubated in the absence of Ca2+o. 6. On the basis of the observation that AlF4- activates GTP-binding regulatory proteins [Sternweiss & Gilman (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4888-4891], it is concluded that the present results provide evidence for the function of a GTP-binding regulatory protein in the mechanism by which hormones stimulate plasma-membrane Ca2+ inflow in the liver cell, and indicate that an increase in [Ca2+]i and the activation of protein kinase C are not part of this mechanism.


1986 ◽  
Vol 238 (2) ◽  
pp. 531-535 ◽  
Author(s):  
R P Leach ◽  
M A Titheradge

The opioid peptides [Leu]enkephalin and dynorphin-(1-13) were shown to enhance glycogen breakdown when added directly to hepatocytes. This was the result of a concerted effect on the enzymes of glycogen metabolism, with a stimulation of glycogen phosphorylase activity and a simultaneous decrease in glycogen synthase I activity. The latter only became significant when the enzyme was activated by incubating the cells in presence of 20 mM- or 40 mM-glucose. The effect of the opioid peptides was independent of an increase in cyclic AMP or any change in the activity ratio of the cyclic AMP-dependent protein kinase and was abolished by depleting the cells of Ca2+. Both [Leu]enkephalin and dynorphin-(1-13) produced a significant decrease in cyclic AMP formation, suggesting that in liver, as in neuronal tissue, they may act by inhibiting adenylate cyclase activity.


1987 ◽  
Vol 248 (3) ◽  
pp. 911-918 ◽  
Author(s):  
B P Hughes ◽  
J N Crofts ◽  
A M Auld ◽  
L C Read ◽  
G J Barritt

1. In hepatocytes, epidermal growth factor (EFG) (a) increased the rate of 45Ca2+ exchange in cells incubated at 1.3 mM extracellular Ca2+, (b) increased the activity of glycogen phosphorylase a and the intracellular free Ca2+ concentration (measured with quin2) in a process dependent on the concentration of extracellular Ca2+, and (c) enhanced the increase in glycogen phosphorylase activity which follows the addition of Ca2+ to cells previously incubated in the absence of Ca2+. It is concluded that EGF stimulates plasma-membrane Ca2+ inflow. 2. The effects of the combination of EGF and vasopressin on the rate of 45Ca2+ exchange and on the rate of increase in glycogen phosphorylase activity were the same as those of vasopressin alone. 3. The amount of 45Ca2+ released by EGF from internal stores was about 30% of that released by vasopressin. No detectable increase in [3H]inositol mono-, bis- or tris-phosphate was observed after the addition of EGF to cells labelled with myo-[3H]inositol. 4. In hepatocytes isolated from rats treated with pertussis toxin, the effects of EGF and vasopressin on phosphorylase activity (measured at 1.3 mM-Ca2+) and on the rate of Ca2+ inflow (measured with quin2) were markedly decreased compared with those in normal cells. 5. Treatment with pertussis toxin did not impair the ability of vasopressin to release Ca2+ from internal stores, but decreased vasopressin-stimulated [3H]inositol polyphosphate formation by 50%. 6. It is concluded that the mechanism(s) by which vasopressin and EGF stimulate plasma-membrane Ca2+-inflow transporters in hepatocytes involves a GTP-binding regulatory protein sensitive to pertussis toxin, and does not require an increase in the concentration of inositol trisphosphate comparable with that which induces the release of Ca2+ from the endoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document