inositol polyphosphates
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 19)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jia Zhou ◽  
Qinli Hu ◽  
Xinlong Xiao ◽  
Deqiang Yao ◽  
Shenghong Ge ◽  
...  

AbstractPhosphate, a key plant nutrient, is perceived through inositol polyphosphates (InsPs) by SPX domain-containing proteins. SPX1 an inhibit the PHR2 transcription factor to maintain Pi homeostasis. How SPX1 recognizes an InsP molecule and represses transcription activation by PHR2 remains unclear. Here we show that, upon binding InsP6, SPX1 can disrupt PHR2 dimers and form a 1:1 SPX1-PHR2 complex. The complex structure reveals that SPX1 helix α1 can impose a steric hindrance when interacting with the PHR2 dimer. By stabilizing helix α1, InsP6 allosterically decouples the PHR2 dimer and stabilizes the SPX1-PHR2 interaction. In doing so, InsP6 further allows SPX1 to engage with the PHR2 MYB domain and sterically block its interaction with DNA. Taken together, our results suggest that, upon sensing the surrogate signals of phosphate, SPX1 inhibits PHR2 via a dual mechanism that attenuates dimerization and DNA binding activities of PHR2.


2021 ◽  
Author(s):  
Seung Eun Park ◽  
Jae Woong Jung ◽  
Su-Hyung Lee ◽  
Seung Ju Park ◽  
Jaeseung Ryu ◽  
...  

As a pleiotropic signaling factor, inositol polyphosphate multikinase (IPMK) is involved in key biological events such as growth and innate immunity, acting either enzymatically to mediate the biosynthesis of inositol polyphosphates and phosphatidylinositol 3,4,5-trisphosphates, or noncatalytically to control key signaling target molecules. However, the functional significance of IPMK in regulating gut epithelial homeostasis remains largely unknown. Here we show that intestinal epithelial-specific deletion of IPMK aggravates dextran sulfate sodium (DSS)-induced colitis with higher clinical colitis scores and elevated epithelial barrier permeability. No apparent defects in PI3K-AKT signaling pathway and pro-inflammatory cytokine production were found in IPMK-deficient colons challenged by DSS treatment. RNA-sequencing and FACS analyses further revealed significantly decreased tuft cells in IPMK-deficient colons. Importantly, IPMK deletion in the gut epithelium was found to decrease choline acetyltransferase (ChAT) but not IL-25, suggesting selective loss of cholinergic signaling. Thus, these findings identify IPMK as a physiological determinant of tuft cell differentiation and highlight the critical function of IPMK in the control of gut homeostasis.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3601
Author(s):  
Raja Mohanrao ◽  
Ruth Manorama ◽  
Shubhra Ganguli ◽  
Mithun C. Madhusudhanan ◽  
Rashna Bhandari ◽  
...  

IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates—scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5—from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.


2021 ◽  
Author(s):  
Hitika Gulabani ◽  
Krishnendu Goswami ◽  
Yashika Walia ◽  
Jewel Jameeta Noor ◽  
Kishor D. Ingole ◽  
...  

AbstractThe propensity for polyphosphorylation makes myo-inositol derivatives, the inositol polyphosphates (InsPs), especially phytic acid or inositol hexakisphosphate (InsP6) the major form of phosphate storage in plants. Acts of pyrophosphorylation on InsP6 generates InsP7 or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. Also implicated as co-factors for several phytohormone signaling networks, InsP7/InsP8 modulate key developmental processes. With recent identification as the common moeity for transducing both jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 is the classic example of a metabolite that may moonlight crosstalks to different cellular pathways during diverse stress adaptations. We show here that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2), but not other InsP-kinases, suppress basal salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, elevated endogenous SA levels and constitutive activation of defense signaling lead to enhanced resistance against the virulent Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that activated SA-signaling sectors in these mutants modulate expression amplitudes of phosphate-starvation inducible (PSI)-genes, reported earlier. In turn, via mutualism the heightened basal defenses in these mutants require upregulated PSI-gene expressions likely highlighting the increased demand of phosphates required to support immunity. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators among diverse signaling networks programming stress-appropriate adaptations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ekin Ucuncu ◽  
Karthyayani Rajamani ◽  
Miranda S. C. Wilson ◽  
Daniel Medina-Cano ◽  
Nami Altin ◽  
...  

AbstractInositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5281
Author(s):  
Tania Maffucci ◽  
Marco Falasca

Several studies have identified specific signalling functions for inositol polyphosphates (IPs) in different cell types and have led to the accumulation of new information regarding their cellular roles as well as new insights into their cellular production. These studies have revealed that interaction of IPs with several proteins is critical for stabilization of protein complexes and for modulation of enzymatic activity. This has not only revealed their importance in regulation of several cellular processes but it has also highlighted the possibility of new pharmacological interventions in multiple diseases, including cancer. In this review, we describe some of the intracellular roles of IPs and we discuss the pharmacological opportunities that modulation of IPs levels can provide.


2020 ◽  
Vol 21 (19) ◽  
pp. 7198
Author(s):  
Tania Maffucci ◽  
Marco Falasca

Signaling pathways regulated by the phosphoinositide 3-kinase (PI3K) enzymes have a well-established role in cancer development and progression. Over the past 30 years, the therapeutic potential of targeting this pathway has been well recognized, and this has led to the development of a multitude of drugs, some of which have progressed into clinical trials, with few of them currently approved for use in specific cancer settings. While many inhibitors compete with ATP, hence preventing the catalytic activity of the kinases directly, a deep understanding of the mechanisms of PI3K-dependent activation of its downstream effectors led to the development of additional strategies to prevent the initiation of this signaling pathway. This review summarizes previously published studies that led to the identification of inositol polyphosphates as promising parent molecules to design novel inhibitors of PI3K-dependent signals. We focus our attention on the inhibition of protein–membrane interactions mediated by binding of pleckstrin homology domains and phosphoinositides that we proposed 20 years ago as a novel therapeutic strategy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sonia Campo ◽  
Blanca San Segundo

Abstract Most land plants form beneficial associations with arbuscular mycorrhizal (AM) fungi which improves mineral nutrition, mainly phosphorus, in the host plant in exchange for photosynthetically fixed carbon. Most of our knowledge on the AM symbiosis derives from dicotyledonous species. We show that inoculation with the AM fungus Funneliformis mosseae stimulates growth and increases Pi content in leaves of rice plants (O. sativa, cv Loto, ssp japonica). Although rice is a host for AM fungi, the systemic transcriptional responses to AM inoculation, and molecular mechanisms underlying AM symbiosis in rice remain largely elusive. Transcriptomic analysis identified genes systemically regulated in leaves of mycorrhizal rice plants, including genes with functions associated with the biosynthesis of phospholipids and non-phosphorus lipids (up-regulated and down-regulated, respectively). A coordinated regulation of genes involved in the biosynthesis of phospholipids and inositol polyphosphates, and genes involved in hormone biosynthesis and signaling (jasmonic acid, ethylene) occurs in leaves of mycorrhizal rice. Members of gene families playing a role in phosphate starvation responses and remobilization of Pi were down-regulated in leaves of mycorrhizal rice. These results demonstrated that the AM symbiosis is accompanied by systemic transcriptional responses, which are potentially important to maintain a stable symbiotic relationship in rice plants.


2020 ◽  
Vol 477 (14) ◽  
pp. 2621-2638 ◽  
Author(s):  
Hayley Whitfield ◽  
Gaye White ◽  
Colleen Sprigg ◽  
Andrew M. Riley ◽  
Barry V.L. Potter ◽  
...  

Inositol polyphosphates are ubiquitous molecular signals in metazoans, as are their pyrophosphorylated derivatives that bear a so-called ‘high-energy’ phosphoanhydride bond. A structural rationale is provided for the ability of Arabidopsis inositol tris/tetrakisphosphate kinase 1 to discriminate between symmetric and enantiomeric substrates in the production of diverse symmetric and asymmetric myo-inositol phosphate and diphospho-myo-inositol phosphate (inositol pyrophosphate) products. Simple tools are applied to chromatographic resolution and detection of known and novel diphosphoinositol phosphates without resort to radiolabeling approaches. It is shown that inositol tris/tetrakisphosphate kinase 1 and inositol pentakisphosphate 2-kinase comprise a reversible metabolic cassette converting Ins(3,4,5,6)P4 into 5-InsP7 and back in a nucleotide-dependent manner. Thus, inositol tris/tetrakisphosphate kinase 1 is a nexus of bioenergetics status and inositol polyphosphate/diphosphoinositol phosphate metabolism. As such, it commands a role in plants that evolution has assigned to a different class of enzyme in mammalian cells. The findings and the methods described will enable a full appraisal of the role of diphosphoinositol phosphates in plants and particularly the relative contribution of reversible inositol phosphate hydroxykinase and inositol phosphate phosphokinase activities to plant physiology.


Sign in / Sign up

Export Citation Format

Share Document