scholarly journals Protein kinase C is not required for insulin stimulation of hexose uptake in muscle cells in culture

1987 ◽  
Vol 242 (1) ◽  
pp. 131-136 ◽  
Author(s):  
A Klip ◽  
T Ramlal

The L6 skeletal muscle cell line has been identified as a suitable model to study the action of insulin on glucose uptake in muscle [Klip, Li & Logan (1984) Am. J. Physiol. 247, E291-E296]. The signals that transfer information from occupied insulin receptors to glucose transporters remain unknown. Here we report that activation of protein kinase C by exogenous phorbol esters results in stimulation of glucose uptake. Protein C kinase activity was induced to migrate from the cytosolic fraction to the microsomal fraction after 40 min of exposure of intact cells to 4 beta-phorbol 12,13-dibutyrate. In contrast, incubation with insulin did not alter the subcellular distribution of the kinase. Prolonged preincubation of L6 cells with phorbol esters resulted in depletion of kinase C activity, whereas neither the basal rate of glucose uptake nor its stimulation by insulin were affected. This suggests that protein kinase C is expressed in L6 cells, and that insulin stimulation of hexose transport does not involve protein kinase C.

2001 ◽  
Vol 280 (2) ◽  
pp. E229-E237 ◽  
Author(s):  
Eulàlia Montell ◽  
Marco Turini ◽  
Mario Marotta ◽  
Matthew Roberts ◽  
Véronique Noé ◽  
...  

The increased availability of saturated lipids has been correlated with development of insulin resistance, although the basis for this impairment is not defined. This work examined the interaction of saturated and unsaturated fatty acids (FA) with insulin stimulation of glucose uptake and its relation to the FA incorporation into different lipid pools in cultured human muscle. It is shown that basal or insulin-stimulated 2-deoxyglucose uptake was unaltered in cells preincubated with oleate, whereas basal glucose uptake was increased and insulin response was impaired in palmitate- and stearate-loaded cells. Analysis of the incorporation of FA into different lipid pools showed that palmitate, stearate, and oleate were similarly incorporated into phospholipids (PL) and did not modify the FA profile. In contrast, differences were observed in the total incorporation of FA into triacylglycerides (TAG): unsaturated FA were readily diverted toward TAG, whereas saturated FA could accumulate as diacylglycerol (DAG). Treatment with palmitate increased the activity of membrane-associated protein kinase C, whereas oleate had no effect. Mixture of palmitate with oleate diverted the saturated FA toward TAG and abolished its effect on glucose uptake. In conclusion, our data indicate that saturated FA-promoted changes in basal glucose uptake and insulin response were not correlated to a modification of the FA profile in PL or TAG accumulation. In contrast, these changes were related to saturated FA being accumulated as DAG and activating protein kinase C. Therefore, our results suggest that accumulation of DAG may be a molecular link between an increased availability of saturated FA and the induction of insulin resistance.


1990 ◽  
Vol 10 (6) ◽  
pp. 2983-2990
Author(s):  
J C Lacal ◽  
A Cuadrado ◽  
J E Jones ◽  
R Trotta ◽  
D E Burstein ◽  
...  

Expression of the N-ras oncogene under the control of the glucocorticoid-responsive promoter in the pheochromocytoma cell line UR61, a subline of PC-12 cells, has been used to investigate the differentiation process to neuronal cells triggered by ras oncogenes (I. Guerrero, A. Pellicer, and D. E. Burstein, Biochem. Biophys. Res. Commun. 150:1185-1192, 1988). Using ras-inducible cell lines, we observed that expression of the oncogenic N-ras p21 protein interferes with the ability of phorbol esters to induce downregulation of protein kinase C. This effect was associated with the appearance of immunologically detectable protein kinase C as well as the activity of the enzyme as analyzed either by binding of [3H]phorbol-12,13-dibutyrate in intact cells or by in vitro kinase activity. These results indicate a relationship between ras p21 and protein kinase C in neuronal differentiation in this model system. Comparison to the murine fibroblast system suggests that this relationship may be functional.


1989 ◽  
Vol 258 (1) ◽  
pp. 177-185 ◽  
Author(s):  
D M Blakeley ◽  
A N Corps ◽  
K D Brown

Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.


1987 ◽  
Vol 253 (2) ◽  
pp. C219-C229 ◽  
Author(s):  
L. L. Muldoon ◽  
G. A. Jamieson ◽  
A. C. Kao ◽  
H. C. Palfrey ◽  
M. L. Villereal

The mitogen-induced activation of Na+-H+ exchange was investigated in two cultured human fibroblast strains (HSWP and WI-38 cells) that, based on previous studies, differed in their response to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (L. M. Vincentini and M. L. Villereal, Proc. Natl. Acad. Sci. USA 82: 8053-8056, 1985). The role of protein kinase C in the activation of Na+-H+ exchange was investigated by comparing the effects of TPA on Na+ influx, in vitro phosphorylation, and in vivo phosphorylation in both cell types. Although both cell types have significant quantities of protein kinase C activity that can be activated by TPA in intact cells, the addition of TPA to intact cells stimulates Na+ influx in WI-38 cells but not in HSWP cells, indicating that in HSWP cells the stimulation of protein kinase C is not sufficient to activate the Na+-H+ exchanger. Cells were then depleted of protein kinase C activity by chronic treatment with high doses of TPA. Both HSWP and WI-38 cells were rendered protein kinase C deficient by this treatment as determined by in vitro and in vivo phosphorylation studies. Protein kinase C-deficient HSWP cells lose the ability for TPA to inhibit the serum-induced activation of Na+-H+ exchange, but there is no reduction in the stimulation of Na+ influx by serum, bradykinin, vasopressin, melittin, or vanadate, indicating that protein kinase C activity is not necessary for the mitogen-induced activation of Na+-H+ exchange in HSWP cells by agents known to stimulate phosphatidylinositol turnover (G. A. Jamieson and M. Villereal. Arch. Biochem. Biophys. 252: 478-486, 1987). In contrast, depletion of protein kinase C activity in WI-38 cells significantly reduces both the TPA- and the serum-induced activation of the Na+-H+ exchange system, suggesting that protein kinase C activity is necessary for at least a portion of the mitogen-induced activation of the Na+-H+ exchanger in WI-38 cells. These results indicate that the mechanisms for regulating Na+-H+ exchange can differ dramatically between different types of fibroblasts.


1989 ◽  
Vol 108 (2) ◽  
pp. 553-567 ◽  
Author(s):  
V Papadopoulos ◽  
P F Hall

The cytoskeletons of Y-1 mouse adrenal tumor cells contain a calcium and phospholipid-dependent protein kinase (protein kinase C) that is bound sufficiently tight to resist extraction by 0.5% Triton but not by 1.0% Triton. The enzyme has been purified to near homogeneity from cytoskeleton and cytosol. It shows features typical of this type of kinase, namely a requirement for Ca2+ and phospholipid, stimulation by tumor promoters but not by nontumor-promoting phorbol esters, and inhibition by trifluoperazine. The enzyme shows specificity for four substrates found in the cytoskeleton, namely 80, 33, 20, and 18 kD. The first three substrates are phosphorylated by the enzyme; the fourth is dephosphorylated and is therefore affected by the kinase indirectly. The 80-kD protein is the kinase enzyme itself which is autophosphorylated in vitro and in the cytoskeleton. The 20-kD protein is myosin light chain. The 33- and 18-kD proteins are unidentified. The same substrates were phosphorylated when Y-1 cells were permeabilized with digitonin and incubated with [gamma-32P]ATP and phorbol-12-myristate-13-acetate. Partly purified protein kinase C changes the extent of phosphorylation of the same substrates when added to cytoskeletons previously extracted to remove endogenous protein kinase C. Addition of Ca2+, phosphatidylserine, and phorbol-12-myristate-13-acetate to cytoskeletons, and addition of these three agents plus protein kinase C to extracted cytoskeletons, causes these structures to undergo a rapid and extensive rounding. A similar change is induced in intact cells by addition of phorbol ester. It is concluded that protein kinase C is capable of changing the shape of adrenal cells by an action that involves autophosphorylation and phosphorylation of myosin light chain. This response may in turn be related to the steroidogenic responses to ACTH and cyclic AMP.


1985 ◽  
Vol 101 (1) ◽  
pp. 269-276 ◽  
Author(s):  
S Grinstein ◽  
S Cohen ◽  
J D Goetz ◽  
A Rothstein

The Na+/H+ antiport is stimulated by 12-O-tetradecanoylphorbol-13, acetate (TPA) and other phorbol esters in rat thymic lymphocytes. Mediation by protein kinase C is suggested by three findings: (a) 1-oleoyl-2-acetylglycerol also activated the antiport; (b) trifluoperazine, an inhibitor of protein kinase C, blocked the stimulation of Na+/H+ exchange; and (c) activation of countertransport was accompanied by increased phosphorylation of specific membrane proteins. The Na+/H+ antiport is also activated by osmotic cell shrinking. The time course, extent, and reversibility of the osmotically induced and phorbol ester-induced responses are similar. Moreover, the responses are not additive and they are equally susceptible to inhibition by trifluoperazine, N-ethylmaleimide, and ATP depletion. The extensive analogies between the TPA and osmotically induced effects suggested a common underlying mechanism, possibly activation of a protein kinase. It is conceivable that osmotic shrinkage initiates the following sequence of events: stimulation of protein kinase(s) followed by activation of the Na+/H+ antiport, resulting in cytoplasmic alkalinization. The Na+ taken up through the antiport, together with the HCO3- and Cl- accumulated in the cells as a result of the cytoplasmic alkalinization, would be followed by osmotically obliged water. This series of events could underlie the phenomenon of regulatory volume increase.


1992 ◽  
Vol 12 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Ulf H. Lerner ◽  
Gustaf Brunius ◽  
Thomas Modeer

Recombinant human interleukin-1β (IL-1β) and bradykinin (BK) synergistically stimulate prostaglandin E2 (PGE2) formation in human gingival fibroblasts cultured for 24 h. Neither BK or IL-1β per se, nor their combinations, caused any acute stimulation of cellular cyclic AMP accumulation. BK, but not IL-1β, caused a rapid, transient rise of intracellular Ca2+ concentration ([Ca2+]i), as assessed by recordings of fura-2 fluorescence in monolayers of prelabelled gingival fibroblasts. IL-1β did not change the effect of BK on [Ca2+]i. Ionomycin and A 23187, two calcium ionophores, synergistically potentiated the stimulatory effect of IL-1β on PGE2 formation. Three different phorbol esters known to activate protein kinase C also synergistically potentiated the action of IL-1β on PGE2 formation. Exogenously added arachidonic acid significantly enhanced the basal formation of PGE2. In IL-1β treated cells, the enhancement of PGE2 formation seen after addition of arachidonic acid, was synergistically upregulated by IL-1β. These data show that i) the synergistic interaction between IL-1β and BK on PGE2 formation is not due to an effect linked to an upregulation of cyclic AMP or [Ca2+]i; ii) the signal transducing mechanism by which BK interacts with IL-1β, however, may be linked to a BK induced stimulation of [Ca2+]i and/or protein kinase C; iii) the mechanism involved in the action of IL-1β may, at least partly, be due to enhancement of the biosynthesis of prostanoids mediated by an upregulation of cyclooxygenase activity.


1987 ◽  
Vol 252 (6) ◽  
pp. F1073-F1079
Author(s):  
M. C. Chobanian ◽  
M. R. Hammerman

To characterize the regulation of ammoniagenesis and gluconeogenesis in renal proximal tubule, ammonia and glucose productions were measured in suspensions of canine proximal tubular segments incubated with 10 mM L-glutamine. Productions were linear functions of time for 120 min and were decreased as extracellular pH was increased from 7.0 to 7.5 To ascertain whether activation of protein kinase c affects either process, we incubated segments with tumor-promoting phorbol esters, 12-O-tetradecanoylphorbol-13-acetate (TPA), or phorbol 12,13-dibutyrate, or with the inactive phorbol ester 4 alpha-phorbol. Ammoniagenesis and gluconeogenesis were inhibited by incubation with 10(-6) M of the two former compounds but not the latter compound. Inhibition of ammoniagenesis and gluconeogenesis occurred after incubation with as little as 10(-9) M phorbol 12,13-dibutyrate. Phorbol ester-induced inhibition was observed under conditions such that extracellular [Na+] was greater than intracellular [Na+], but not when extracellular [Na+] equaled intracellular [Na+], and was not observed in the presence of amiloride. Our findings are consistent with a role for protein kinase c in the control of ammoniagenesis and gluconeogenesis in proximal tubule. Such control could be mediated via stimulation of Na+-H+ exchange.


1990 ◽  
Vol 258 (4) ◽  
pp. C610-C617 ◽  
Author(s):  
C. J. Kalberg ◽  
C. Sumners

The radioligand binding of 125I-angiotensin II (ANG II) and calcium phospholipid-dependent protein kinase C (PKC) activity were measured to study the specificity and mechanisms of PKC involvement in the regulation of ANG II-specific binding site expression in neuronal cultures prepared from the brains of 1-day-old rats. Previously, PKC-activating phorbol esters were shown to increase the specific binding of 125I-ANG II in neuronal cultures. However, phorbol esters have many biological effects, which may nonspecifically act to increase 125I-ANG II-specific binding. In the present study, mezerein and teleocidin A, two activators of PKC that are chemically unrelated to phorbol esters, increased the specific binding of 125I-ANG II in a dose- and time-dependent manner with 50% effective dose (ED50) values of 32 and 79 nM, respectively. The PKC antagonist H-7 dose dependently inhibited phorbol 12-myristate 13-acetate (TPA)-stimulated increases in 125I-ANG II binding, whereas downregulation of PKC activity by chronic phorbol ester incubations of 24 and 48 h prevented TPA-stimulated increases in 125I-ANG II-specific binding. TPA (0.8 microM), mezerein (0.76 microM), and teleocidin A (0.5 microM) all caused a rapid translocation of PKC activity from the cytosol to the particulate fraction by 15 min. Temporally, the maximal stimulation of PKC translocation by mezerein, teleocidin A, and TPA preceded their ability to stimulate maximal 125I-ANG II-specific binding. Taken together, these results suggest that PKC is directly involved in the stimulation of ANG II-specific binding site expression and that translocation of PKC is a prerequisite for the increased expression of ANG II binding sites.


Sign in / Sign up

Export Citation Format

Share Document