scholarly journals Glucose-, calcium- and concentration-dependence of acetylcholine stimulation of insulin release and ionic fluxes in mouse islets

1988 ◽  
Vol 254 (1) ◽  
pp. 211-218 ◽  
Author(s):  
M C Garcia ◽  
M P Hermans ◽  
J C Henquin

Mouse islets were used to define the glucose-dependence and extracellular Ca2+ requirement of muscarinic stimulation of pancreatic beta-cells. In the presence of a stimulatory concentration of glucose (10 mM) and of Ca2+, acetylcholine (0.1-100 microM) accelerated 3H efflux from islets preloaded with myo-[3H]inositol. It also stimulated 45Ca2+ influx and efflux, 86Rb+ efflux and insulin release. In the absence of Ca2+, only 10-100 microM-acetylcholine mobilized enough intracellular Ca2+ to trigger an early but brief peak of insulin release. At a non-stimulatory concentration of glucose (3 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ and 86Rb+ efflux in the presence and absence of extracellular Ca2+. However, only 100 microM-acetylcholine marginally increased 45Ca2+ influx and caused a small, delayed, stimulation of insulin release, which was abolished by omission of Ca2+. At a maximally effective concentration of glucose (30 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ influx and efflux only slightly, but markedly amplified insulin release. Again, only 100 microM-acetylcholine mobilized enough Ca2+ to trigger a peak of insulin release in the absence of Ca2+. The results thus show that only high concentrations of acetylcholine (greater than or equal to 10 microM) can induce release at low glucose or in a Ca2+-free medium. beta-Cells exhibit their highest sensitivity to acetylcholine in the presence of Ca2+ and stimulatory glucose. Under these physiological conditions, the large amplification of insulin release appears to be the result of combined effects of the neurotransmitter on Ca2+ influx, on intracellular Ca2+ stores and on the efficiency with which Ca2+ activates the releasing machinery.


2015 ◽  
Vol 41 (4) ◽  
pp. S65 ◽  
Author(s):  
Ivan Mauricio Suarez Castellanos ◽  
Aleksandar Jeremic ◽  
Vesna Zderic


1996 ◽  
Vol 271 (4) ◽  
pp. E702-E710 ◽  
Author(s):  
B. A. Cunningham ◽  
J. T. Deeney ◽  
C. R. Bliss ◽  
B. E. Corkey ◽  
K. Tornheim

Normal insulin secretion is oscillatory in vivo and from groups of perifused islets. Stimulation of rat islets with different glucose concentrations gave insulin oscillations of similar period (5-8 min) but increasing amplitude. It has been assumed that oscillatory secretion is due to oscillations in intracellular free Ca2+, as seen in single islets and single pancreatic beta-cells. However, when islets were perifused with diazoxide and high KCl to maintain high intracellular free Ca2+, insulin oscillations of similar amplitude and period still occurred on glucose stimulation, although superimposed on elevated basal secretion. Several likely possibilities for a diffusible synchronizing factor were tested, including pyruvate, lactate, ATP, and insulin itself; nevertheless, perifusion with high concentrations of these did not prevent insulin oscillations. Clonal pancreatic beta-cells (HIT) and dissociated islets also exhibited oscillatory insulin secretion, but with the 5- to 8-min period oscillations superimposed on 15- to 20-min period oscillations. These results indicate that the mechanisms for generating and synchronizing insulin oscillations reside in the beta-cell, although the structure of the islet may modulate the oscillation pattern.



2017 ◽  
Vol 43 (6) ◽  
pp. 1210-1222 ◽  
Author(s):  
Ivan Suarez Castellanos ◽  
Aleksandar Jeremic ◽  
Joshua Cohen ◽  
Vesna Zderic


Diabetes ◽  
1980 ◽  
Vol 29 (12) ◽  
pp. 953-959 ◽  
Author(s):  
Y. Kanazawa ◽  
S. Kawazu ◽  
M. Ikeuchi ◽  
K. Kosaka


1991 ◽  
Vol 266 (32) ◽  
pp. 21649-21656
Author(s):  
A.Q. Zhang ◽  
Z.Y. Gao ◽  
P. Gilon ◽  
M. Nenquin ◽  
G. Drews ◽  
...  


1978 ◽  
Vol 235 (5) ◽  
pp. E493 ◽  
Author(s):  
E Gagerman ◽  
L A Idahl ◽  
H P Meissner ◽  
I B T�ljedal

Acetylcholine potentiated the glucose-induced insulin release from microdissected mouse islets of Langerhans but had no effect on basal insulin release. Significant potentiation was obtained with 0.1 micron acetylcholine in the presence of 10 micron eserine and with 1 micron or more acetylcholine in the absence of a choline esterase inhibitor. Carbamylcholine, too, potentiated insulin release. Potentiation was blocked by methylatropine, whereas methylatropine alone had no effect on insulin release. Acetylcholine or carbamylcholine (5-500 micron) had no obvious effect on cyclic GMP or cyclic AMP in the islets. In the presence of 11.1 mM D-glucose, the membrane potential of beta-cells oscillated slowly between a polarized silent state of -50 to -55 mV and a depolarized active state of -33 to -39 mV, at which a fast spike activity occurred. Acetylcholine made the potential stay at the plateau and induced a continuous spike activity pattern. Atropine inhibited the electrical effects of acetylcholine but not those of glucose alone. It is suggested that cholinergic potentiation of insulin release is mediated by changes of transmembrane ionic fluxes, probably without the intervention of cyclic GMP or cyclic AMP.



Sign in / Sign up

Export Citation Format

Share Document