scholarly journals Ca2+-sensitivity of inositol 1,4,5-trisphosphate-mediated Ca2+ release in permeabilized pancreatic acinar cells

1990 ◽  
Vol 265 (3) ◽  
pp. 681-687 ◽  
Author(s):  
P H G M Willems ◽  
M D De Jong ◽  
J J H H M De Pont ◽  
C H Van Os

Hormonal and phorbol ester pretreatment of pancreatic acinar cells markedly decreases the Ins(1,4,5)P3-induced release of actively stored Ca2+ [Willems, Van Den Broek, Van Os & De Pont (1989) J. Biol. Chem. 264, 9762-9767]. Inhibition occurred at an ambient free Ca2+ concentration of 0.1 microM, suggesting a receptor-mediated increase in Ca2(+)-sensitivity of the Ins(1,4,5)P3-operated Ca2+ channel. To test this hypothesis, the Ca2(+)-dependence of Ins(1,4,5)P3-induced Ca2+ release was investigated. In the presence of 0.2 microM free Ca2+, permeabilized cells accumulated 0.9 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Uptake into this pool increased 2.2- and 3.3-fold with 1.0 and 2.0 microM free Ca2+ respectively. At 0.2, 1.0 and 2.0 microM free Ca2+, Ins(1,4,5)P3 maximally released 0.53 (56%), 0.90 (44%) and 0.62 (20%) nmol of Ca2+/mg of acinar protein respectively. Corresponding half-maximal stimulatory Ins(1,4,5)P3 concentrations were calculated to be 0.5, 0.6 and 1.4 microM, suggesting that the affinity of Ins(1,4,5)P3 for its receptor decreases beyond 1.0 microM free Ca2+. The possibility that an inhibitory effect of sub-micromolar Ca2+ is being masked by the concomitant increase in size of the releasable store is excluded, since Ca2+ release from cells loaded in the presence of 0.1 or 0.2 microM free Ca2+ and stimulated at higher ambient free Ca2+ was not inhibited below 1.0 microM free Ca2+. At 2.0 and 10.0 microM free Ca2+, Ca2+, Ca2+ release was inhibited by approx. 30% and 75% respectively. The results presented show that hormonal pretreatment does not lead to an increase in Ca2(+)-sensitivity of the release mechanism. Such an increase in Ca2(+)-sensitivity to sub-micromolar Ca2+ is required to explain sub-micromolar oscillatory changes in cytosolic free Ca2+ by a Ca2(+)-dependent negative-feedback mechanism.

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Long Guo ◽  
Baolong Liu ◽  
Chen Zheng ◽  
Hanxun Bai ◽  
Hao Ren ◽  
...  

The present study aimed to investigate whether leucine affects the pancreatic exocrine by controlling the antisecretory factor (AF) and cholecystokinin receptor (CCKR) expression as well as the proteasome activity in pancreatic acinar cells of dairy calves. The pancreatic acinar cells were isolated from newborn Holstein bull calves and cultured using the Dulbecco’s modified Eagle’s medium/nutrient mixture F12 Ham’s liquid (DMEM/F12). There were six treatments of leucine dosage including 0 (control), 0.23, 0.45, 1.35, 4.05, and 12.15 mM, respectively. After culture for 3 h, the samples were collected for subsequent analysis. As the leucine concentration increased from 0 to 1.35 mM, the α-amylase activity in media decreased significantly (P<0.05), while further increase in leucine concentration did not show any decrease in α-amylase activity. Addition of leucine inhibited (P<0.05) the expression of AF and CCKR, and decreased the activity of proteasome (P<0.05) by 76%, 63%, 24%, 7%, and 9%, respectively. Correlation analysis results showed α-amylase secretion was negatively correlated with leucine concentration (P<0.01), and positively correlated with proteasome activity (P<0.01) and the expression of CCK1R (P<0.01) and AF (P<0.05). The biggest regression coefficient was showed between α-amylase activity and proteasome (0.7699, P<0.001). After inhibition of proteasome by MG-132, low dosage leucine decreased (P<0.05) the activity of proteasome and α-amylase, as well as the expression of CCK1R. In conclusion, we demonstrated that the high-concentration leucine induced decrease in α-amylase release was mainly by decreasing proteasome activity.


Cell Calcium ◽  
1991 ◽  
Vol 12 (9) ◽  
pp. 587-598 ◽  
Author(s):  
F.H.M.M. van de Put ◽  
J.J.H.H.M. De Pont ◽  
P.H.G.M. Willems

1998 ◽  
Vol 275 (3) ◽  
pp. C810-C817 ◽  
Author(s):  
Antonio González ◽  
Fatima Pfeiffer ◽  
Andreas Schmid ◽  
Irene Schulz

We have used fluo 3-loaded mouse pancreatic acinar cells to investigate the relationship between Ca2+ mobilization and intracellular pH (pHi). The Ca2+-mobilizing agonist ACh (500 nM) induced a Ca2+ release in the luminal cell pole followed by spreading of the Ca2+ signal toward the basolateral side with a mean speed of 16.1 ± 0.3 μm/s. In the presence of an acidic pHi, achieved by blockade of the Na+/H+exchanger or by incubation of the cells in a Na+-free buffer, a slower spreading of ACh-evoked Ca2+ waves was observed (7.2 ± 0.6 μm/s and 7.5 ± 0.3 μm/s, respectively). The effects of cytosolic acidification on the propagation rate of ACh-evoked Ca2+ waves were largely reversible and were not dependent on the presence of extracellular Ca2+. A reduction in the spreading speed of Ca2+ waves could also be observed by inhibition of the vacuolar H+-ATPase with bafilomycin A1 (11.1 ± 0.6 μm/s), which did not lead to cytosolic acidification. In contrast, inhibition of the endoplasmic reticulum Ca2+-ATPase by 2,5-di- tert-butylhydroquinone led to faster spreading of the ACh-evoked Ca2+ signals (25.6 ± 1.8 μm/s), which was also reduced by cytosolic acidification or treatment of the cells with bafilomycin A1. Cytosolic alkalinization had no effect on the spreading speed of the Ca2+ signals. The data suggest that the propagation rate of ACh-induced Ca2+ waves is decreased by inhibition of Ca2+ release from intracellular stores due to cytosolic acidification or to Ca2+ pool alkalinization and/or to a decrease in the proton gradient directed from the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool to the cytosol.


1985 ◽  
Vol 232 (1) ◽  
pp. 237-243 ◽  
Author(s):  
G M Burgess ◽  
J S McKinney ◽  
R F Irvine ◽  
J W Putney

The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.


1998 ◽  
Vol 17 (4) ◽  
pp. 219-230 ◽  
Author(s):  
Ludwig Jonas ◽  
Ulrike Mikkat ◽  
Anke Witte ◽  
Uta Beckmann ◽  
Katrin Dölker ◽  
...  

In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA) on the cholecystokinin (CCK) binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+release and α-amylase secretionin vitroas well as on pancreatic secretion of intact ratsin vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 µg/kg/h iv or 10 µg/kg/h ip) of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum α-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous ip administration of cerulein and WGA or UEA in a dosage of 125 µg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1 ± 2.0 µm (cerulein) to 7.5 ± 1.1 µm (cerulein + WGA) or 7.2 ± 1.3 µm (cerulein + UEA). The serum amylase activity was reduced from 63.7 ± 15.8 mmol/l \times min (cerulein) to 37.7 ± 11.8 (cerulein + WGA) or 39.4; +52.9; -31.1 (cerulein + UEA-I). Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.


1997 ◽  
Vol 324 (2) ◽  
pp. 645-651 ◽  
Author(s):  
Hideo MOGAMI ◽  
LLOYD MILLS Chris ◽  
David V. GALLACHER

It is recognized in many cellular systems that the receptor/G-protein activation of phospholipase C and Ins(1,4,5)P3 production is the transduction pathway regulating the release of Ca2+ from internal stores. Ca2+ signals can now be monitored at the level of single cells but the biochemical detection of Ins(1,4,5)P3 cannot match this resolution. It is often difficult or impossible to directly attribute responses evoked in single cells by putative phospholipase C-coupled agonists to changes in Ins(1,4,5)P3 levels. U73122 is an aminosteroid that is reported to act as a specific inhibitor of phospholipase C and it has become an important tool in establishing the link between phospholipase C activation and cellular Ca2+ signalling. In the present study we use both patch-clamp electrophysiology and the imaging of fluorescent Ca2+ indicators to investigate the effect of U73122 in mouse pancreatic acinar cells. The study reveals that U73122 has effects other than the inhibition of phospholipase C. U73122 can directly activate ion channels. It can itself promote the release of Ca2+ from intracellular stores in permeabilized cells and in intact cells it triggers a release of Ca2+ that is initiated specifically at the secretory pole of these morphologically and functionally polarized cells. We also present evidence that U73122 can potentiate the response to Ins(1,4,5)P3; this is seen both in permeabilized cells and in patch-clamp protocols in which cells are internally dialysed with submaximal concentrations of Ins(1,4,5)P3. The effects of U73122 are therefore multiple and not specific for the inhibition of phospholipase C. Importantly, all the effects described influence Ca2+ signalling yet in many experimental protocols some of these effects can go unnoticed and might in error be attributed simply to the inhibition of Ins(1,4,5)P3 production.


1999 ◽  
Vol 113 (6) ◽  
pp. 851-872 ◽  
Author(s):  
Andrew P. LeBeau ◽  
David I. Yule ◽  
Guy E. Groblewski ◽  
James Sneyd

The properties of inositol 1,4,5-trisphosphate (IP3)-dependent intracellular calcium oscillations in pancreatic acinar cells depend crucially on the agonist used to stimulate them. Acetylcholine or carbachol (CCh) cause high-frequency (10–12-s period) calcium oscillations that are superimposed on a raised baseline, while cholecystokinin (CCK) causes long-period (&gt;100-s period) baseline spiking. We show that physiological concentrations of CCK induce rapid phosphorylation of the IP3 receptor, which is not true of physiological concentrations of CCh. Based on this and other experimental data, we construct a mathematical model of agonist-specific intracellular calcium oscillations in pancreatic acinar cells. Model simulations agree with previous experimental work on the rates of activation and inactivation of the IP3 receptor by calcium (DuFour, J.-F., I.M. Arias, and T.J. Turner. 1997. J. Biol. Chem. 272:2675–2681), and reproduce both short-period, raised baseline oscillations, and long-period baseline spiking. The steady state open probability curve of the model IP3 receptor is an increasing function of calcium concentration, as found for type-III IP3 receptors by Hagar et al. (Hagar, R.E., A.D. Burgstahler, M.H. Nathanson, and B.E. Ehrlich. 1998. Nature. 396:81–84). We use the model to predict the effect of the removal of external calcium, and this prediction is confirmed experimentally. We also predict that, for type-III IP3 receptors, the steady state open probability curve will shift to lower calcium concentrations as the background IP3 concentration increases. We conclude that the differences between CCh- and CCK-induced calcium oscillations in pancreatic acinar cells can be explained by two principal mechanisms: (a) CCK causes more phosphorylation of the IP3 receptor than does CCh, and the phosphorylated receptor cannot pass calcium current; and (b) the rate of calcium ATPase pumping and the rate of calcium influx from the outside the cell are greater in the presence of CCh than in the presence of CCK.


Sign in / Sign up

Export Citation Format

Share Document