scholarly journals The preferential uptake of very-low-density lipoprotein cholesteryl ester by rat liver in vivo

1990 ◽  
Vol 272 (3) ◽  
pp. 735-741 ◽  
Author(s):  
J C Holder ◽  
V A Zammit ◽  
D S Robinson

The removal from the blood and the uptake by the liver of injected very-low-density lipoprotein (VLDL) preparations that had been radiolabelled in their apoprotein and cholesteryl ester moieties was studied in lactating rats. Radiolabelled cholesteryl ester was removed from the blood and taken up by the liver more rapidly than sucrose-radiolabelled apoprotein. Near-maximum cholesteryl ester uptake by the liver occurred within 5 min of the injection of the VLDL. At this time, apoprotein B uptake by the liver was only about 25% of the maximum. Maximum uptake of the injected VLDL apoprotein B label was not achieved until at least 15 min after injection, by which time the total uptakes of cholesteryl ester and apoprotein B label were very similar. The results suggest that preferential uptake of the lipoprotein cholesteryl ester by the liver occurred before endocytosis of the entire lipoprotein complex. The fate of the injected VLDL cholesteryl ester after its uptake by the liver was also monitored. Radiolabel associated with the hepatic cholesteryl ester fraction fell steadily from its early maximum level, the rate of fall being faster and more extensive when the fatty acid, rather than the cholesterol, moiety of the ester was labelled. By 30 min after the injection of VLDL containing [3H]cholesteryl ester, over one-third of the injected label was already present as [3H]cholesterol in the liver. When VLDL containing cholesteryl [14C]oleate was injected, a substantial proportion (about 25%) of the injected radiolabelled fatty acid appeared in the hepatic triacylglycerol fraction within 60 min: very little was present in the plasma triacylglycerol fraction at this time.

1983 ◽  
Vol 212 (1) ◽  
pp. 173-182
Author(s):  
M M Ittmann ◽  
C Cooper

Very-low-density lipoprotein (VLDL), labelled in vivo with [9,10-3H]oleate, was taken up rapidly by liver after injection in vivo. Initially, radioactive lipoprotein remnants in the VLDL density range were present in liver as a bound extracellular pool that could be released by perfusion with polyphosphate or heparin. The bound remnant showed a decrease in mean diameter and an increased proportion of cholesteryl ester as a function of time after injection. When VLDL of different mean diameters was injected, it was found that: (1) total uptake by liver was independent of diameter; (2) small VLDL was not taken up more rapidly than large VLDL; and (3) Large VLDL lost no more triacylglycerol before binding than did small VLDL and larger species of mean diameter greater than 40 nm were bound. It is concluded that there is no unique VLDL remnant taken up by liver in vivo. When livers were perfused after binding radioactive VLDL in vivo, the lipoprotein was metabolized, with the production of water-soluble products, and this metabolism was inhibited by chloroquine.


1977 ◽  
Vol 73 (2) ◽  
pp. 332-353 ◽  
Author(s):  
D M Tarlow ◽  
P A Watkins ◽  
R E Reed ◽  
R S Miller ◽  
E E Zwergel ◽  
...  

The nonproliferating chicken liver cell culture system described yields cell monolayers with morphological and lipogenic properties characteristic of the physiological-nutritional state of donor animals. Synthesis and secretion of fatty acid, cholesterol, and very low density lipoprotein (VLDL) occur at in vivo rates and respond to hormones and agents which affect these processes in vivo. Cells derived from fed chickens maintain high rates of synthesis of fatty acid and cholesterol for several days if insulin is present in the medium. High rates of fatty acid synthesis are correlated with the appearance of membrane-enclosed triglyceride-rich vesicles in the cytoplasm; deletion of insulin causes a decrease (T1/2 = 22 h) in fatty acid synthetic activity. Addition of glucagon or cyclic AMP (cAMP) causes an immediate cessation of fatty acid synthesis and blocks the appearance of the triglyceride-rich vesicles. Fatty acid synthesis in liver cells prepared from fasted chickens is less than 5% that of cells from fed animals. After 2-3 days in culture with serum-free medium containing insulin +/- triiodothyronine, fatty acid synthesis is restored to normal; glucagon or dibutyryl cAMP blocks this recovery. Liver cells derived from estradiol-treated chickens synthesize and secrete VLDL for at least 48 h in culture. Electron micrographs of these cells reveal more extensive development of the rough endoplasmic reticulum and Golgi complex compared to cells from untreated chickens. Whereas [3H]leucine incorporation into total protein is unaffected by estrogen treatment, [3H]leucine incorporation into cellular and secreted immunoprecipitable VLDL is markedly increased indicating specific activation of VLDL apopeptide synthesis; 8-10% of the labeled protein synthesized and secreted is VLDL. Dodecyl sulfate-acrylamide gel electrophoresis of immunoprecipitated 3H-VLDL reveals three major apopepetides of 300,000, 11,000, and 8,000 daltons corresponding to those of purified chicken VLDL.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2169-2174 ◽  
Author(s):  
Wan Huang ◽  
Anantha Metlakunta ◽  
Nikolas Dedousis ◽  
Heidi K. Ortmeyer ◽  
Maja Stefanovic-Racic ◽  
...  

It is well established that leptin increases the sensitivity of carbohydrate metabolism to the effects of insulin. Leptin and insulin also have potent effects on lipid metabolism. However, the effects of leptin on the regulation of liver lipid metabolism by insulin have not been investigated. The current study addressed the effects of leptin on insulin-regulated hepatic very low-density lipoprotein (VLDL) metabolism in vivo in rats. A 90-min hyperinsulinemic/euglycemic clamp (4 mU/kg · min−1) reduced plasma VLDL triglyceride (TG) by about 50% (P < 0.001 vs. saline control). Importantly, a leptin infusion (0.2 μg/kg · min−1) in combination with insulin reduced plasma VLDL-TG by about 80% (P < 0.001 vs. insulin alone). These effects did not require altered skeletal muscle lipoprotein lipase activity but did include differential effects of insulin and leptin on liver apolipoprotein (apo) B and TG metabolism. Thus, insulin decreased liver and plasma apoB100/B48 levels (∼50%, P < 0.01), increased liver TGs (∼20%, P < 0.05), and had no effect on fatty acid oxidation. Conversely, leptin decreased liver TGs (∼50%, P < 0.01) and increased fatty acid oxidation (∼50%, P < 0.01) but had no effects on liver or plasma apoB levels. Importantly, the TG-depleting and prooxidative effects of leptin were maintained in the presence of insulin. We conclude that leptin additively increases the suppressive effects of insulin on hepatic and systemic VLDL metabolism by stimulating depletion of liver TGs and increasing oxidative metabolism. The net effect of the combined actions of insulin and leptin is to decrease the production and TG content of VLDL particles.


1977 ◽  
Vol 53 (3) ◽  
pp. 221-226
Author(s):  
D. Reichl ◽  
N. B. Myant ◽  
J. J. Pflug ◽  
D. N. Rudra

1. The transport of apoprotein B from the lipoproteins of plasma into the lipoproteins of lymph draining the foot has been studied in four men with type III hyperlipoproteinaemia. 2. Three subjects were given autologous 125I-labelled very-low-density lipoprotein (VLDL) and 131I-labelled low-density lipoprotein (LDL) by intravenous injection; the fourth was given autologous 125I-labelled VLDL and 131I-labelled intermediate-density lipoprotein (IDL) plus LDL. 3. The 125I/131I ratios in serum and lymph apoprotein B, and the 125I and 131I specific radioactivities of apoprotein B in VLDL, IDL and LDL from serum and lymph, indicate that apoprotein B in the circulating VLDL can reach peripheral lymph without the intermediacy of circulating LDL.


Sign in / Sign up

Export Citation Format

Share Document