scholarly journals Acyl-chain specificity of human milk bile-salt-activated lipase

1991 ◽  
Vol 279 (1) ◽  
pp. 297-302 ◽  
Author(s):  
C S Wang

In order to probe the active-site structure of human milk bile-salt-activated lipase (BAL), the kinetics of the BAL-catalysed reaction were studied using monoesters as substrates. Among the fatty acyl chains, ranging from C8 to C16 of monoacylglycerols in a single equimolar assay mixture, there was a consistent trend of increased reactivity with decreased fatty-acyl-chain length for both the basal and taurocholate-stimulated activities of BAL. In addition, the detection of hydrolysis of long-chain monoacylglycerols in the absence of bile salt indicates that it is possible for the long-chain fatty acid monoester to form an enzyme-substrate complex with the basal form of BAL. I further examined the reaction kinetics of BAL with water-soluble short-chain esters of p-nitrophenol. The results indicated that there is a consistent trend towards a decreased Michaelis-Menten constant with increased acyl-chain length. Therefore it was concluded that the decreased reactivity with increased acyl-chain length of acylglycerols is probably not a consequence of the lowered affinity of the substrate for the enzyme. The fact that butyrate ester has the optimum acyl chain to be a substrate of BAL can be attributed to its acyl-chain length being long enough for interaction with the active centre of BAL and short enough to provide adequate positioning of the ester bond for transition state complex formation. The calculated free energy of BAL catalysis based on the derived kinetic parameters provides additional insight into the effect on the enzyme-substrate interaction of increasing the number of methylene groups in the acyl chain of substrates.

2015 ◽  
Vol 81 (2) ◽  
pp. C317-C323
Author(s):  
Jin F. Qi ◽  
Cai H. Jia ◽  
Jung A. Shin ◽  
Jeong M. Woo ◽  
Xiang Y. Wang ◽  
...  

2020 ◽  
Vol 320 ◽  
pp. 106-111
Author(s):  
Elias Björnson ◽  
Ylva Östlund ◽  
Marcus Ståhlman ◽  
Martin Adiels ◽  
Elmir Omerovic ◽  
...  

2015 ◽  
Vol 396 (6-7) ◽  
pp. 693-705 ◽  
Author(s):  
Woo-Jae Park ◽  
Joo-Won Park

Abstract Sphingolipids have emerged as an important lipid mediator in intracellular signalling and metabolism. Ceramide, which is central to sphingolipid metabolism, is generated either via a de novo pathway, by attaching fatty acyl CoA to a long-chain base, or via a salvage pathway, by degrading pre-existing sphingolipids. As a ‘sphingolipid rheostat’ has been proposed, the balance between ceramide and sphingosine-1-phosphate has been the object of considerable attention. Ceramide has recently been reported to have a different function depending on its acyl chain length: six ceramide synthases (CerS) determine the specific ceramide acyl chain length in mammals. All CerS-deficient mice generated to date show that sphingolipids with defined acyl chain lengths play distinct pathophysiological roles in disease models. This review describes recent advances in understanding the associations of CerS with various diseases and includes clinical case reports.


2001 ◽  
Vol 41 (supplement) ◽  
pp. S128
Author(s):  
S. Matsuoka ◽  
M. Akiyama ◽  
H. Yamada ◽  
K. Tsuchihashi ◽  
S. Gasa

2013 ◽  
Vol 195 (12) ◽  
pp. 843-852 ◽  
Author(s):  
Juthaporn Sangwallek ◽  
Yoshinobu Kaneko ◽  
Minetaka Sugiyama ◽  
Hisayo Ono ◽  
Takeshi Bamba ◽  
...  

2007 ◽  
Vol 18 (12) ◽  
pp. 5113-5123 ◽  
Author(s):  
Mirkka Koivusalo ◽  
Maurice Jansen ◽  
Pentti Somerharju ◽  
Elina Ikonen

To study the principles of endocytic lipid trafficking, we introduced pyrene sphingomyelins (PyrSMs) with varying acyl chain lengths and domain partitioning properties into human fibroblasts or HeLa cells. We found that a long-chain, ordered-domain preferring PyrSM was targeted Hrs and Tsg101 dependently to late endosomal compartments and recycled to the plasma membrane in an NPC1- and cholesterol-dependent manner. A short-chain, disordered domain preferring PyrSM recycled more effectively, by using Hrs-, Tsg101- and NPC1-independent routing that was insensitive to cholesterol loading. Similar chain length-dependent recycling was observed for unlabeled sphingomyelins (SMs). The findings 1) establish acyl chain length as an important determinant in the endocytic trafficking of SMs, 2) implicate ESCRT complex proteins and NPC1 in the endocytic recycling of ordered domain lipids to the plasma membrane, and 3) introduce long-chain PyrSM as the first fluorescent lipid tracing this pathway.


Sign in / Sign up

Export Citation Format

Share Document