scholarly journals Steady-state kinetic mechanism of bovine brain tubulin: tyrosine ligase

1992 ◽  
Vol 286 (1) ◽  
pp. 243-251 ◽  
Author(s):  
N L Deans ◽  
R D Allison ◽  
D L Purich

The ATP-dependent resynthesis of tubulin from tyrosine and untyrosinated tubulin was examined to establish the most probable steady-state kinetic mechanism of the tubulin: tyrosine ligase (ADP-forming). Three pair-wise sets of initial rate experiments, involving variation of two substrates pair-wise with the third substrate held at a high (but non-saturating) level, yielded convergent-line data, a behaviour that is diagnostic for sequential mechanisms. Michaelis constants were 14 microM, 1.9 microM and 17 microM for ATP, untyrosinated tubulin and L-tyrosine respectively, and the maximal velocity was 0.2 microM/min. AMP was a competitive inhibitor with respect to ATP, and a non-competitive inhibitor versus either tubulin or tyrosine. Likewise, L-dihydroxyphenylalanine acted competitively relative to tyrosine and non-competitively with respect to either ATP or tubulin. These findings directly support a random sequential mechanism. Product inhibition patterns with ADP were also consistent with this assignment; however, inhibition studies were not practical with either orthophosphate or tyrosinated tubulin because both were very weak inhibitors. Substrate protection of the enzyme against alkylation by N-ethylmaleimide and thermal inactivation, along with evidence of enzyme binding to ATP-Sepharose and tubulin-Sepharose, also supports the idea that this three-substrate enzyme reaction exhibits a random substrate addition pathway.

1977 ◽  
Vol 161 (2) ◽  
pp. 383-387 ◽  
Author(s):  
P A Briley ◽  
R Eisenthal ◽  
R Harrison ◽  
G D Smith

Diffluoro-oxaloacetate behaves as a competitive inhibitor of 2-oxoglutarate and as an uncompetitive inhibitor with respect to aspartate in steady-state kinetic experiments with cytoplasmic aspartate transaminase. In the presence of high concentrations of aspartate transaminase, difluoro-oxaloacetate is slowly transaminated to difluoro-aspartate, suggesting its use as a kinetic probe to study the reactions of the aminic form of the enzyme.


2001 ◽  
Vol 360 (3) ◽  
pp. 727-736 ◽  
Author(s):  
Bernd NIDETZKY ◽  
Christian EIS

Fungal trehalose phosphorylase is classified as a family 4 glucosyltransferase that catalyses the reversible phosphorolysis of α,α-trehalose with net retention of anomeric configuration. Glucosyl transfer to and from phosphate takes place by the partly rate-limiting interconversion of ternary enzyme–substrate complexes formed from binary enzyme–phosphate and enzyme–α-d-glucopyranosyl phosphate adducts respectively. To advance a model of the chemical mechanism of trehalose phosphorylase, we performed a steady-state kinetic study with the purified enzyme from the basidiomycete fungus Schizophyllum commune by using alternative substrates, inhibitors and combinations thereof in pairs as specific probes of substrate-binding recognition and transition-state structure. Orthovanadate is a competitive inhibitor against phosphate and α-d-glucopyranosyl phosphate, and binds 3×104-fold tighter (Ki≈ 1μM) than phosphate. Structural alterations of d-glucose at C-2 and O-5 are tolerated by the enzyme at subsite +1. They lead to parallel effects of approximately the same magnitude (slope = 1.14; r2 = 0.98) on the reciprocal catalytic efficiency for reverse glucosyl transfer [log (Km/kcat)] and the apparent affinity of orthovanadate determined in the presence of the respective glucosyl acceptor (log Ki). An adduct of orthovanadate and the nucleophile/leaving group bound at subsite +1 is therefore the true inhibitor and displays partial transition state analogy. Isofagomine binds to subsite −1 in the enzyme–phosphate complex with a dissociation constant of 56μM and inhibits trehalose phosphorylase at least 20-fold better than 1-deoxynojirimycin. The specificity of the reversible azasugars inhibitors would be explained if a positive charge developed on C-1 rather than O-5 in the proposed glucosyl cation-like transition state of the reaction. The results are discussed in the context of α-retaining glucosyltransferase mechanisms that occur with and without a β-glucosyl enzyme intermediate.


2000 ◽  
Vol 352 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Roberto VELASCO-GARCÍA ◽  
Lilian GONZÁLEZ-SEGURA ◽  
Rosario A. MUÑOZ-CLARES

Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)+ to NADP(H). In Pseudomonas aeruginosa this reaction is a compulsory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. The kinetic mechanisms of the NAD+- and NADP+-dependent reactions were examined by steady-state kinetic methods and by dinucleotide binding experiments. The double-reciprocal patterns obtained for initial velocity with NAD(P)+ and for product and dead-end inhibition establish that both mechanisms are steady-state random. However, quantitative analysis of the inhibitions, and comparison with binding data, suggest a preferred route of addition of substrates and release of products in which NAD(P)+ binds first and NAD(P)H leaves last, particularly in the NADP+-dependent reaction. Abortive binding of the dinucleotides, or their analogue ADP, in the betaine aldehyde site was inferred from total substrate inhibition by the dinucleotides, and parabolic inhibition by NADH and ADP. A weak partial uncompetitive substrate inhibition by the aldehyde was observed only in the NADP+-dependent reaction. The kinetics of P. aeruginosa BADH is very similar to that of glucose-6-phosphate dehydrogenase, suggesting that both enzymes fulfil a similar amphibolic metabolic role when the bacteria grow in choline and when they grow in glucose.


2006 ◽  
Vol 188 (3) ◽  
pp. 1155-1158 ◽  
Author(s):  
Sarah H. Lawrence ◽  
James G. Ferry

ABSTRACT Phosphotransacetylase (EC 2.3.1.8) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. A steady-state kinetic analysis of the phosphotransacetylase from Methanosarcina thermophila indicated that there is a ternary complex kinetic mechanism rather than a ping-pong kinetic mechanism. Additionally, inhibition patterns of products and a nonreactive substrate analog suggested that the substrates bind to the enzyme in a random order. Dynamic light scattering revealed that the enzyme is dimeric in solution.


2001 ◽  
Vol 390 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Jovita Marcinkeviciene ◽  
Wenjun Jiang ◽  
Lisa M Kopcho ◽  
Gregory Locke ◽  
Ying Luo ◽  
...  

2016 ◽  
Vol 473 (5) ◽  
pp. 651-660 ◽  
Author(s):  
Renata A.G. Reis ◽  
Patricia Ferreira ◽  
Milagros Medina ◽  
M. Cristina Nonato

Leishmania major dihydro-orotate dehydrogenase (DHODHLm) oxidizes dihydro-orotate to orotate (ORO) in the de novo pyrimidine biosynthetic pathway. The enzyme reaction mechanism was elucidated by steady- and pre-steady-state kinetics. ORO release was found to be the rate-limiting step in the overall catalysis.


Biochemistry ◽  
2010 ◽  
Vol 49 (44) ◽  
pp. 9542-9550 ◽  
Author(s):  
Hongling Yuan ◽  
Guoxing Fu ◽  
Phillip T. Brooks ◽  
Irene Weber ◽  
Giovanni Gadda

Sign in / Sign up

Export Citation Format

Share Document