scholarly journals The effect of insulin-like growth factor II on glucose uptake and metabolism in rat skeletal muscle in vitro

1992 ◽  
Vol 286 (2) ◽  
pp. 561-565 ◽  
Author(s):  
S J Bevan ◽  
M Parry-Billings ◽  
E Opara ◽  
C T Liu ◽  
D B Dunger ◽  
...  

The effect of insulin-like growth factor II (IGF II) on the rates of lactate formation, glycogen synthesis and glucose transport in the presence of a range of concentrations of insulin were investigated using an isolated preparation of rat skeletal muscle. IGF II, at a concentration of 65 ng/ml, caused a small but significant increase in the rates of these processes at a basal physiological insulin concentration (10 muunits/ml), but was without effect in the presence of 1, 100, 1000 or 10,000 muunits of insulin/ml. Hence IGF II increased the insulin sensitivity of this tissue. This effect was removed if the incubation medium was supplemented with an equimolar concentration of IGF binding protein 1 (BP1). It is suggested that changes in the concentration of IGF II and/or BP1 may regulate glucose uptake and metabolism in skeletal muscle and have physiological significance in the control of blood glucose level.

1992 ◽  
Vol 285 (1) ◽  
pp. 269-274 ◽  
Author(s):  
G Dimitriadis ◽  
M Parry-Billings ◽  
S Bevan ◽  
D Dunger ◽  
T Piva ◽  
...  

1. The effects of insulin-like growth factor I (IGF-I) on the rates of glucose transport and utilization and its interaction with insulin were investigated in rat soleus muscle in vitro. IGF-I increased the rates of glucose transport, lactate formation, glycogen synthesis and the flux of glucose to hexose monophosphate, but it had no effect on the rate of glucose oxidation or glycogenolysis. 2. In the absence of insulin, low levels of IGF-I (0-30 ng/ml) increased the rate of glycolysis and the content of fructose 2,6-bisphosphate, but the content of glucose 6-phosphate remained unaltered; at higher levels of IGF-I (300-3000 ng/ml) the rate of glycolysis and the content of fructose 2,6-bisphosphate showed a further modest increase, but the content of glucose 6-phosphate doubled. Similar changes were seen when the level of insulin was increased from basal (0-0.4 ng/ml) to maximal (40 ng/ml). 3. Neither IGF-I nor insulin affected the contents of ATP, ADP, AMP, phosphocreatine or citrate. 4. Maximal concentrations of IGF-I increased the rate of lactate formation to a greater extent than did maximal concentrations of insulin. 5. In the presence of IGF-I, the rate of glucose utilization was less responsive to insulin. 6. The results suggest that, in rat skeletal muscle: (a) IGF-I increases the rates of glucose transport and utilization independently of insulin, and has a preferential effect on the rate of lactate formation; (b) the effects of IGF-I and insulin are not additive; (c) in addition to its effects on glucose transport, IGF-I increases the rate of glycogen synthesis and may stimulate glycolysis at the level of 6-phosphofructokinase; (d) changes in the content of fructose 2,6-bisphosphate may be part of the mechanism to regulate glycolytic flux in skeletal muscle in response to either IGF-I or insulin.


1994 ◽  
Vol 300 (3) ◽  
pp. 781-785 ◽  
Author(s):  
B Burguera ◽  
C W Elton ◽  
J F Caro ◽  
E B Tapscott ◽  
W J Pories ◽  
...  

Although the growth-promoting effects of insulin-like growth factor II (IGF-II) have been intensively studied, the acute actions of this hormone on glucose metabolism have been less well evaluated, especially in skeletal muscle of humans. We and other groups have shown that IGFs reduce glycaemic levels in humans and stimulate glucose uptake in rat muscle. The purpose of the present study was to evaluate the effect of IGF-II on glucose transport in muscle of normal and obese patients with and without non-insulin-dependent diabetes mellitus (NIDDM), as well as to identify the receptor responsible for this action. 2-Deoxyglucose transport was determined in vitro using a muscle-fibre strip preparation. IGF-II were investigated in biopsy material of rectus abdominus muscle taken from lean and obese patients and obese patients with NIDDM at the time of surgery. In the lean group, IGF-II (100 nM) stimulated glucose transport 2.1-fold, which was slightly less than stimulation by insulin (2.8-fold) at the same concentration. Binding of IGF-II was approx. 25% of that of insulin at 1 nM concentrations of both hormones. Obesity with or without NIDDM significantly reduced IGF-II-stimulated glucose uptake compared with the lean group. In order to explore which receptor mediated the IGF-II effect, we compared glucose uptake induced by IGF-II and two IGF-II analogues: [Leu27]IGF-II, with high affinity for the IGF-II/Man 6-P receptor but markedly reduced affinity for the IGF-I and insulin receptors, and [Arg54,Arg55]IGF-II was similar to that of IGF-II, whereas [Leu27]IGF-II had a very diminished effect. Results show that IGF-II is capable of stimulating muscle glucose uptake in lean but not in obese subjects and this effect seems not to be mediated via an IGF-II/Man 6-P receptor.


1981 ◽  
Vol 240 (2) ◽  
pp. E184-E190 ◽  
Author(s):  
L. J. Brady ◽  
M. N. Goodman ◽  
F. N. Kalish ◽  
N. B. Ruderman

In contrast to adipose tissue and heart, the in vitro sensitivity of skeletal muscle to insulin is enhanced by starvation. To determine the basis for this, insulin binding and its ability to stimulate glucose metabolism were examined in the incubated rat soleus. In solei from 50-g rats, starvation for 48 h enhanced insulin binding by 50-100% at concentrations of 100 ng/ml or less. Starvation also resulted in higher basal and insulin-stimulated rates of glycogen synthesis, glycolysis, and glucose uptake. The enhanced effect of insulin only occurred at concentrations less than 50-75 ng/ml, in keeping with the increased binding of insulin in this concentration range. On the other hand, under conditions in which binding at equilibrium was the same, glucose uptake was still higher in the starved group, suggesting that some postreceptor event may have been more sensitive to insulin. These studies confirm that the in vitro sensitivity of rat skeletal muscle to insulin is enhanced by 48 h of starvation. They suggest that this is due at least partially to an increase in insulin binding at physiological concentrations.


2001 ◽  
Vol 280 (5) ◽  
pp. E677-E684 ◽  
Author(s):  
Nicolas Musi ◽  
Tatsuya Hayashi ◽  
Nobuharu Fujii ◽  
Michael F. Hirshman ◽  
Lee A. Witters ◽  
...  

The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-β-d-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPKα1 and AMPKα2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-β-d-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3- O-methyl-d-glucose (3-MG) uptake. There were dose-dependent increases in AMPKα2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPKα1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPKα2 activity and 3-MG uptake but had little effect on AMPKα1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPKα1 and -α2 activity and 3-MG uptake. Although the AMPKα1 and -α2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPKα2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.


Sign in / Sign up

Export Citation Format

Share Document