scholarly journals The characterization of a cyclophilin-type peptidyl prolyl cis-trans-isomerase from the endoplasmic-reticulum lumen

1994 ◽  
Vol 300 (3) ◽  
pp. 871-875 ◽  
Author(s):  
S Bose ◽  
M Mücke ◽  
R B Freedman

A luminally located peptidyl prolyl cis-trans-isomerase (PPI) has been purified from bovine liver microsomes. It has a molecular mass of 20.6 kDa, and N-terminal sequencing demonstrates strong sequence similarity to the sequences of the cyclophilin B family. The enzyme catalyses the isomerization of the standard proline-containing peptide N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, as well as the refolding of RNAase T1. Kinetic properties, substrate-specificity data and inhibition by cyclosporin A indicate that it is a cyclophilin-type PPI, consistent with the amino-acid-sequence results.

2001 ◽  
Vol 353 (3) ◽  
pp. 635-644 ◽  
Author(s):  
Hidekazu KUWAYAMA ◽  
Helena SNIPPE ◽  
Mari DERKS ◽  
Jeroen ROELOFS ◽  
Peter J. M. VAN HAASTERT

In Dictyostelium cAMP and cGMP have important functions as first and second messengers in chemotaxis and development. Two cyclic-nucleotide phosphodiesterases (DdPDE 1 and 2) have been identified previously, an extracellular dual-specificity enzyme and an intracellular cAMP-specific enzyme (encoded by the psdA and regA genes respectively). Biochemical data suggest the presence of at least one cGMP-specific phosphodiesterase (PDE) that is activated by cGMP. Using bioinformatics we identified a partial sequence in the Dictyostelium expressed sequence tag database that shows a high degree of amino acid sequence identity with mammalian PDE catalytic domains (DdPDE3). The deduced amino acid sequence of a full-length DdPDE3 cDNA isolated in this study predicts a 60kDa protein with a 300-residue C-terminal PDE catalytic domain, which is preceded by approx. 200 residues rich in asparagine and glutamine residues. Expression of the DdPDE3 catalytic domain in Escherichia coli shows that the enzyme has Michaelis–Menten kinetics and a higher affinity for cGMP (Km = 0.22µM) than for cAMP (Km = 145µM); cGMP does not stimulate enzyme activity. The enzyme requires bivalent cations for activity; Mn2+ is preferred to Mg2+, whereas Ca2+ yields no activity. DdPDE3 is inhibited by 3-isobutyl-1-methylxanthine with an IC50 of approx. 60µM. Overexpression of the DdPDE3 catalytic domain in Dictyostelium confirms these kinetic properties without indications of its activation by cGMP. The properties of DdPDE3 resemble those of mammalian PDE9, which also shows the highest sequence similarity within the catalytic domains. DdPDE3 is the first cGMP-selective PDE identified in lower eukaryotes.


1990 ◽  
Vol 265 (8) ◽  
pp. 4583-4591 ◽  
Author(s):  
J D Pearson ◽  
D B DeWald ◽  
W R Mathews ◽  
N M Mozier ◽  
H A Zürcher-Neely ◽  
...  

2000 ◽  
Vol 203 (22) ◽  
pp. 3411-3423 ◽  
Author(s):  
Z. Zhang ◽  
D. Chen ◽  
M.G. Wheatly

The discontinuous pattern of muscle growth during the moulting cycle of a freshwater crustacean (the crayfish Procambarus clarkii) was used as a model system to examine the regulation of the expression of Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA). We describe the cloning, sequencing and characterization of a novel SERCA cDNA (3856 bp) obtained from crayfish axial abdominal muscle by reverse transcription/polymerase chain reaction (RT-PCR) followed by rapid amplification of cDNA ends (RACE). This complete sequence contains a 145 base pair (bp) noncoding region at the 5′ end, a 3006 bp open reading frame coding for 1002 amino acid residues with a molecular mass of 110 kDa and 705 bp of untranslated region at the 3′ end. This enzyme contains all the conserved domains found in ‘P’-type ATPases, and the hydropathy profile suggests a transmembrane organization typical of other SERCAs. It exhibits 80% amino acid identity with Drosophila melanogaster SERCA, 79% identity with Artemia franciscana SERCA, 72% identity with rabbit fast-twitch muscle neonatal isoform SERCA1b, 71% identity with slow-twitch muscle isoform SERCA2 and 67% identity with SERCA3. Sequence alignment revealed that regions anchoring the cytoplasmic domain in the membrane were highly conserved and that most differences were in the NH(2) terminus, the central loop region and the COOH terminus. Northern analysis of total RNA from crayfish tissues probed with the 460 bp fragment initially isolated showed four bands (7.6, 7.0, 5.8 and 4.5 kilobases) displaying tissue-specific expression. SERCA was most abundant in muscle (axial abdominal, cardiac and stomach), where it is involved in Ca(2+) resequestration during relaxation, and in eggs, where it may be implicated in early embryogenesis. The level of SERCA mRNA expression in axial abdominal muscle varied during the moulting cycle as determined by slot-blot analysis. SERCA expression was greatest during intermoult and decreased to approximately 50% of this level during pre- and postmoult. Patterns of gene expression for SERCA and other sarcomeric proteins during the crustacean moulting cycle may be regulated by ecdysteroids and/or mechanical stimulation.


2003 ◽  
Vol 15 (2) ◽  
pp. 119-122 ◽  
Author(s):  
Marli Lourdes de Oliveira ◽  
Leila Maria Beltramini ◽  
Salvatore Giovanni de Simone ◽  
Maria Helena Nasser Brumano ◽  
Rosemeire Aparecida Silva-Lucca ◽  
...  

A lectin was isolated from the pod saline extract of Caesalpinia tinctoria by dialoconcentration on Centripep-10 and affinity chromatography on chitin column. The purified lectin was partially characterized with respect to its biochemical and structural properties. It contains 8.3 % of carbohydrate and exhibited an agglutinating activity against human erythrocytes (ABO groups). Its amino acid composition was characterized by a great number of acidic and hydrophobic residues and the estimated molecular mass was 12.5 kDa. The presence of only one N-terminal amino acid sequence (D¹-V-P-A-Y-V-Y-V-H-F10-G-F-G-E-E-H-R -D-V-F20-D), showed the homogeneity of the purified lectin. The far-ultraviolet circular dichroism (CD) spectrum of lectin indicated that it contains 10 % a-helix, 38 % b-sheet, 28 % unordered form and 6 % of P II (poly-L-proline II helix conformation).


Sign in / Sign up

Export Citation Format

Share Document