scholarly journals Phorbol ester stimulates choline uptake in Swiss 3T3 fibroblasts following introduction of the gene encoding protein kinase Cα

1995 ◽  
Vol 305 (2) ◽  
pp. 621-626 ◽  
Author(s):  
B E Slack ◽  
J Breu ◽  
E Livneh ◽  
H Eldar ◽  
R J Wurtman

Phorbol 12-myristate 13-acetate (PMA) stimulated radiolabelled choline uptake and incorporation into phosphatidylcholine (PtdCho) in a time- and concentration-dependent manner in wild-type NIH 3T3 fibroblasts. The accumulation of labelled choline induced by PMA was paralled by an increase in choline mass. The results implicate protein kinase C (PKC) in the regulation of choline uptake. In order to address the PKC-subtype specificity of this response, a study was undertaken in Swiss 3T3 fibroblast cells, which normally express very low levels of PKC alpha. A retroviral expression system was used to introduce the genes for PKC alpha and neomycin resistance (used for selection) into the cells. Two resulting lines expressed PKC alpha at levels that were 20-fold higher than those found in the control (neomycin-resistant) line, or in the wild-type cells. In control Swiss 3T3 fibroblasts, 1 microM PMA elevated choline levels by only 30%, whereas, in Swiss 3T3 cell lines that stably over-expressed PKC alpha, PMA caused a 5-fold enhancement in [14C]choline accumulation. This concentration of PMA significantly increased [14C]PtdCho levels in both control and PKC alpha-over-expressing lines, although the effect in the latter was significantly greater. The effects of PMA were inhibited by the PKC antagonist sphingosine. These results implicate PKC alpha in the regulation of choline accumulation and phospholipid synthesis in fibroblasts. Although additional PKC subtypes appear to participate in the control of PtdCho synthesis in these cells, PMA-stimulated choline uptake in Swiss 3T3 fibroblasts is almost entirely dependent on the presence of PKC alpha.

FEBS Letters ◽  
1994 ◽  
Vol 342 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Cheryl Fitzer-Attas ◽  
Hagit Eldar ◽  
Lea Eisenbach ◽  
Etta Livneh

Gene ◽  
1988 ◽  
Vol 74 (2) ◽  
pp. 465-471 ◽  
Author(s):  
Stefan Rose-John ◽  
Alexander Dietrich ◽  
Friedrich Marks

1992 ◽  
Vol 119 (1) ◽  
pp. 99-110 ◽  
Author(s):  
K Zen ◽  
J Biwersi ◽  
N Periasamy ◽  
A S Verkman

Acidification of the endosomal pathway is important for ligand and receptor sorting, toxin activation, and protein degradation by lysosomal acid hydrolases. Fluorescent probes and imaging methods were developed to measure pH to better than 0.2 U accuracy in individual endocytic vesicles in Swiss 3T3 fibroblasts. Endosomes were pulse labeled with transferrin (Tf), alpha 2-macroglobulin (alpha 2M), or dextran, each conjugated with tetramethylrhodamine and carboxyfluorescein (for pH 5-8) or dichlorocarboxyfluorescein (for pH 4-6); pH in individual labeled vesicles was measured by ratio imaging using a cooled CCD camera and novel image analysis software. Tf-labeled endosomes acidified to pH 6.2 +/- 0.1 with a t1/2 of 4 min at 37 degrees C, and remained small and near the cell periphery. Dextran- and alpha 2M-labeled endosomes acidified to pH 4.7 +/- 0.2, becoming larger and moving toward the nucleus over 30 min; approximately 15% of alpha 2M-labeled endosomes were strongly acidic (pH less than 5.5) at only 1 min after labeling. Replacement of external Cl by NO3 or isethionate strongly and reversibly inhibited acidification. Addition of ouabain (1 mM) at the time of labeling strongly enhanced acidification in the first 5 min; Tf-labeled endosomes acidified to pH 5.3 without a change in morphology. Activation of phospholipase C by vasopressin (50 nM) enhanced acidification of early endosomes; activation of protein kinase C by PMA (100 nM) enhanced acidification strongly, whereas elevation of intracellular Ca by A23187 (1 microM) had no effect on acidification. Activation of protein kinase A by CPT-cAMP (0.5 mM) or forskolin (50 microM) inhibited acidification. Lysosomal pH was not affected by ouabain or the protein kinase activators. These results establish a methodology for quantitative measurement of pH in individual endocytic vesicles, and demonstrate that acidification of endosomes labeled with Tf and alpha 2M (receptor-mediated endocytosis) and dextran (fluid-phase endocytosis) is sensitive to intracellular anion composition, Na/K pump inhibition, and multiple intracellular second messengers.


Sign in / Sign up

Export Citation Format

Share Document