scholarly journals Sodium-proton exchange stimulates Ca2+ release from acidocalcisomes of Trypanosoma brucei

1996 ◽  
Vol 315 (1) ◽  
pp. 265-270 ◽  
Author(s):  
Anibal E. VERCESI ◽  
Roberto DOCAMPO

Acidocalcisomes are acidic vacuoles present in trypanosomatids that contain a considerable fraction of intracellular Ca2+ [Vercesi, Moreno and Docampo (1994) Biochem. J. 304, 227–233; Scott, Moreno and Docampo (1995) Biochem. J. 310, 789–794; Docampo, Scott, Vercesi and Moreno (1995) Biochem. J. 310, 1005–1012]. The data presented here indicate that Na+ stimulates Ca2+ release from the acidocalcisomes of digitonin-permeabilized Trypanosoma brucei procyclic trypomastigotes in a dose-dependent fashion, this effect being enhanced by increasing pH of the medium from 7.0 to 7.8. The hypothesis that this Na+ effect was mediated by alkalinization of the acidocalcisomes via a Na+/H+ antiporter was supported by experiments showing that Na+ promotes release of Acridine Orange previously accumulated in these vacuoles. This putative antiporter did not transport Li+ and was not sensitive to the amiloride analogue 5-(N-ethyl-N-isopropyl)amiloride. Addition of the Na+/H+ ionophore monensin to intact cells loaded with fura 2, in the nominal absence of extracellular Ca2+ to preclude Ca2+ entry, was followed by an increase in cytosolic Ca2+ concentration ([Ca2+]i), which was more accentuated in the presence of extracellular Na+. An increase in intracellular pH (pHi) of BCECF-loaded cells was detected after addition of monensin in the presence of extracellular Na+, whereas a dramatic decrease in pHi was detected in its absence, thus indicating the presence of a significant amount of releasable protons in the acidic compartments. These results are consistent with the presence of a Na+/H+ antiporter in the acidocalcisomes that could be involved in the regulation of pHi and [Ca2+]i in these parasites.

1982 ◽  
Vol 95 (3) ◽  
pp. 903-908 ◽  
Author(s):  
S D Freedman ◽  
J D Jamieson

We undertook studies to determine whether secretagogue action on the exocrine pancreas and parotid is accompanied by phosphorylation of proteins in intact cells. For this purpose, rat pancreatic, and parotid lobules were preincubated with 32Pi for 45 min at 37 degrees C, washed, and then incubated at 37 degrees C in the presence or absence of secretagogues that effect discharge through different second messengers. Among a variety of polypeptides exhibiting enhanced phosphorylation in pancreatic lobules upon a 30-s incubation in the presence of the secretagogues carbamylcholine, cholecystokinin octapeptide, or secretin, one species with an Mr of 29,000 was especially notable for three reasons: (a) its enhanced level of phosphorylation was dependent on the dose of secretagogue used and was still apparent after incubation for 30 min at 37 degrees C; (b) an analogous phosphorylated polypeptide was observed in isoproterenol-stimulated parotid lobules; and (c) in both tissues its selective dephosphorylation was observed upon termination of stimulation by administration of atropine to carbamylcholine-stimulated pancreatic lobules and propranolol to isoproterenol-stimulated parotid lobules. These results suggest that the phosphorylation of one protein with an Mr of 29,000 is closely correlated both temporally and in a dose-dependent fashion with secretagogue action in both the exocrine pancreas and parotid.


1989 ◽  
Vol 62 (04) ◽  
pp. 1078-1082 ◽  
Author(s):  
Burt Adelman ◽  
Patricia Ouynn

SummaryThis report describes the binding of plasminogen to fibrinogen adsorbed onto polystyrene wells. Binding was determined by enzyme linked immunosorbent assay. Both glu- and lys-plasminogen bound to immobilized fibrinogen in a dose-dependent fashion. However, more lys- than glu-plasminogen bound when equal concentrations of either were added to immobilized fibrinogen. Plasminogen binding was inhibited by epsilon aminocaproic acid indicating that binding was mediated via lysine-binding regions of plasminogen. Soluble fibrinogen added in excess of immobilized fibrinogen did not compete for plasminogen binding but fibrinogen fragments produced by plasmin digestion of fibrinogen did. Treatment of immobilized fibrinogen with thrombin caused a small but significant (p <0.01) increase in plasminogen binding. These studies demonstrate that immobilized fibrinogen binds both glu- and lys-plasminogen and that binding is mediated via lysine-binding regions. These interactions may facilitate plasminogen binding to fibrinogen adsorbed on to surfaces and to cells such as platelets which bind fibrinogen.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii106-ii106
Author(s):  
Bryan Iorgulescu ◽  
Prafulla Gokhale ◽  
Maria Speranza ◽  
Benjamin Eschle ◽  
Michael Poitras ◽  
...  

Abstract BACKGROUND Dexamethasone, a uniquely potent corticosteroid, is frequently administered to brain tumor patients to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in glioblastoma patients – particularly in the context of immunotherapy. METHODS We evaluated the dose-dependent effects of dexamethasone when administered with anti-PD-1 and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 or CT-2A glioblastoma tumors, including analyses of intracranial tumors, draining lymph nodes, and spleen. Clinically, the effect of dexamethasone on survival was additionally evaluated in 181 consecutive IDH-wildtype glioblastoma patients treated with anti-PD-(L)1, with adjustment for relevant prognostic factors. RESULTS Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy decreased survival in a dose-dependent fashion and decreased survival following anti-PD-1 plus radiotherapy in both GL261 and immunoresistant CT-2A models. Dexamethasone quantitatively decreased T lymphocytes by reducing the proliferation while increasing apoptosis. Dexamethasone also decreased lymphocyte functional capacity. Myeloid and NK cell populations were also generally reduced. Thus, dexamethasone negatively affects both the adaptive and innate immune responses. As a clinical correlate, a retrospective analysis of 181 consecutive IDH-wildtype glioblastoma patients treated with PD-(L)1 blockade revealed worse survival among those on baseline dexamethasone. Upon multivariable adjustment with relevant prognostic factors, baseline dexamethasone use – regardless of dose – was the strongest predictor of poor survival (reference no dexamethasone; &lt; 2mg HR 2.28, 95%CI=1.41–3.68, p=0.001; ≥2mg HR 1.97, 95%CI=1.27–3.07, p=0.003). CONCLUSIONS Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for glioblastoma patients. Our preclinical analyses also suggest that dexamethasone’s detrimental effects are dose-dependent, suggesting that the lowest possible dose should be used for patients when dexamethasone use is unavoidable. Careful evaluation of dexamethasone use is warranted for neuro-oncology patients undergoing immunotherapy clinical trials.


1996 ◽  
Vol 270 (6) ◽  
pp. G897-G901 ◽  
Author(s):  
J. DelValle ◽  
J. Wakasugi ◽  
H. Takeda ◽  
T. Yamada

The Ca2+/inositol phospholipid signaling cascade has been implicated in the mechanism by which cholecystokinin (CCK) stimulates gastric somatostatin release, but a direct linkage between intracellular events in gastric D cells and somatostatin secretion has not been established. To address this problem we developed a method for correlating somatostatin release with the measurement of intracellular Ca2+ concentration ([Ca2+]i) in isolated D cells. Resting [Ca2+]i in single D cells was 100 +/- 5.7 nM (means +/- SE, n = 41), and CCK induced a rise in [Ca2+]i in a dose-dependent fashion, producing a maximal stimulatory effect (243 +/- 15% of control, n = 12) at a peptide concentration of 2 x 10(-8) M. The CCK-mediated increase in [Ca2+]i was biphasic, with a rapid, initial transient elevation followed by a sustained plateau. The rise in [Ca2+]i was accompanied by a concomitant increase in release of somatostatin-like immunoreactivity (SLI). Removal of extracellular Ca2+ had no effect on the initial transient elevation in [Ca2+]i induced by CCK but abolished both the sustained plateau in [Ca2+]i and the release of SLI. The selective CCK antagonist L-364, 718 (10(-7) M) inhibited the effects of CCK on both [Ca2+]i and SLI release. The nonspecific Ca2+ channel blocker NiCl2 (10(-3) M) and the L-type Ca2+ channel blocker nifedipine inhibited the sustained rise in [Ca2+]i and the release of SLI but left the initial transient increase in [Ca2+]i unaltered. These results indicate that CCK-stimulated release of SLI from D cells in the gastric fundus is linked to influx of extracellular Ca2+ via L-type Ca2+ channels.


1991 ◽  
Vol 261 (5) ◽  
pp. F873-F879 ◽  
Author(s):  
A. S. Brem ◽  
K. L. Matheson ◽  
J. L. Barnes ◽  
D. J. Morris

The enzyme 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) metabolizes glucocorticoid hormones and diminishes their ability to induce sodium transport. In these studies, we determined the location of this enzyme in toad bladder and assessed the biological role for its 11-dehydro end product. Employing a polyclonal antibody directed toward 11 beta-OHSD and immunofluorescence techniques, we located the enzyme in the epithelial cell layer of the toad bladder. Although corticosterone (10(-7) M) can partially suppress aldosterone (10(-7) M)-stimulated short-circuit current (SCC), a clear excess of corticosterone (10(-6) M) did not inhibit the aldosterone-induced induced (10(-8) M) rise in SCC (n = 6). The 11-dehydro product of corticosterone, 11-dehydrocorticosterone (compound A) added to the serosal bath suppressed aldosterone (10(-8) M) peak SCC (360 min) in a dose-dependent fashion reaching 46 +/- 5% of control values at 10(-5) M (n = 6; P less than 0.001). Compound A (10(-5) M) in the mucosal bath also was capable of partially inhibiting the peak aldosterone rise in SCC to 63 +/- 7% of control values with aldosterone at 10(-8) M (n = 6; P less than 0.01) and to 64 +/- 10% of control values with aldosterone at 10(-7) M (n = 9; P less than 0.01). Compound A alone at 10(-5) M did not have any effect on SCC. Isolated toad bladders were not able to transform compound A (at 10(-8) and 10(-5) M) back to corticosterone. Thus the 11-dehydro end product of 11 beta-OHSD (compound A) may play a biologic role by regulating a component of mineralocorticoid-induced sodium transport.


Endocrinology ◽  
1988 ◽  
Vol 123 (4) ◽  
pp. 1705-1711 ◽  
Author(s):  
CLAUDIO MARCOCCI ◽  
EVELYN F. GROLLMAN

2012 ◽  
Vol 221 (2) ◽  
pp. 333-340 ◽  
Author(s):  
M.M. Ewing ◽  
J.C. Karper ◽  
M.L. Sampietro ◽  
M.R. de Vries ◽  
K. Pettersson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document