scholarly journals ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formylmethionyl-leucyl-phenylalanine stimulation of human neutrophils

1997 ◽  
Vol 325 (3) ◽  
pp. 581-585 ◽  
Author(s):  
C. P. MORGAN ◽  
H. SENGELOV ◽  
J. WHATMORE ◽  
N. BORREGAARD ◽  
S. COCKCROFT

Phospholipase D (PLD) is responsible for the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. Human neutrophils contain PLD activity which is regulated by the small GTPases, ADP-ribosylation factor (ARF) and Rho proteins. In this study we have examined the subcellular localization of the ARF-regulated PLD activity in non-activated neutrophils and cells ‘primed‘ with N-formylmethionyl-leucyl-phenylalanine (fMetLeuPhe). We report that PLD activity is localized at the secretory vesicles in control cells and is mobilized to the plasma membrane upon stimulation with fMetLeuPhe. We conclude that the ARF-regulated PLD activity is translocated to the plasma membrane by secretory vesicles upon stimulation of neutrophils with fMetLeuPhe in inflammatory/priming doses. We propose that this relocalization of PLD is important for the subsequent events occurring during neutrophil activation.

1998 ◽  
Vol 273 (21) ◽  
pp. 13157-13164 ◽  
Author(s):  
Amanda Fensome ◽  
Jacqueline Whatmore ◽  
Clive Morgan ◽  
David Jones ◽  
Shamshad Cockcroft

Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

Abstract The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.


2000 ◽  
Vol 345 (3) ◽  
pp. 719-724 ◽  
Author(s):  
Kanamarlapudi VENKATESWARLU ◽  
Peter J. CULLEN

ADP-ribosylation factor (ARF) 6 regulates plasma membrane trafficking and cortical actin formation by cycling between inactive GDP and active GTP-bound conformations. Here we show that agonist stimulation of phosphatidylinositide 3-kinase (PI 3-kinase) activates a pathway that leads to ARF6 activation. We also describe experiments that propose a central role in this pathway for the PI 3-kinase-dependent plasma membrane recruitment of the cytohesin-1 family of PtdIns(3,4,5)P3-binding ARF-exchange factors.


1996 ◽  
Vol 320 (3) ◽  
pp. 785-794 ◽  
Author(s):  
Jacqueline WHATMORE ◽  
Clive P. MORGAN ◽  
Emer CUNNINGHAM ◽  
Kate S. COLLISON ◽  
Keith R. WILLISON ◽  
...  

ADP-ribosylation factor (ARF), a small GTPase required for vesicle formation, has been identified as an activator of phospholipase D (PLD), thus implying that PLD is localized at intracellular organelles. HL60 cells were prelabelled with [14C]acetate for 72 h and, after disruption, fractionated on a linear sucrose gradient. ARF1-regulated PLD activity in each fraction was assessed by measurement of phosphatidylethanol production. Two peaks of activity were identified, coincident with markers for Golgi/endoplasmic reticulum/granules (endomembranes) and plasma membrane respectively. Analysis of the fractions using exogenous phosphatidylcholine as substrate confirmed the presence of ARF1-dependent PLD activity in endomembranes and plasma membrane, and also identified an additional activity in the cytosol. In formyl-Met-Leu-Phe-stimulated cells, PLD activity as assessed by phosphatidylethanol formation was also associated with both the plasma membrane and endomembranes. Since ARF1-regulated PLD activity requires phosphatidylinositol 4,5-bisphosphate (PIP2), the distributions of inositol lipids and the kinases responsible for lipid phosphorylation were examined. PIP2 was highly enriched at the plasma membrane, whereas phosphatidylinositol (PI) and phosphatidylinositol 4-phosphate (PI4P), the precursors for PIP2 synthesis, were found predominantly at endomembranes. The distribution of PI 4-kinase and PI4P 5-kinase activities confirmed the plasma membrane as the major site of PIP2 production. However, endomembranes possessed substantial PI 4-kinase activity and some PI4P 5-kinase activity, illustrating the potential for PIP2 synthesis. It is concluded that: (1) ARF1-regulated PLD activity is localized at endomembranes and the plasma membrane, (2) PIP2 is available at both membrane compartments to function as a cofactor for ARF-regulated PLD, and (3) in intact cells, formyl-Met-Leu-Phe stimulates PLD activity at endomembranes as well as plasma membrane.


1997 ◽  
Vol 138 (6) ◽  
pp. 1239-1254 ◽  
Author(s):  
Michele A. West ◽  
Nicholas A. Bright ◽  
Margaret S. Robinson

AP-1 and AP-2 adaptors are recruited onto the TGN and plasma membrane, respectively. GTPγS stimulates the recruitment of AP-1 onto the TGN but causes AP-2 to bind to an endosomal compartment (Seaman, M.N.J., C.L. Ball, and M.S. Robinson. 1993. J. Cell Biol. 123:1093–1105). We have used subcellular fractionation followed by Western blotting, as well as immunofluorescence and immunogold electron microscopy, to investigate both the recruitment of AP-2 adaptors onto the plasma membrane and their targeting to endosomes, and we have also examined the recruitment of AP-1 under the same conditions. Two lines of evidence indicate that the GTPγS-induced targeting of AP-2 to endosomes is mediated by ADP-ribosylation factor-1 (ARF1). First, GTPγS loses its effect when added to ARF-depleted cytosol, but this effect is restored by the addition of recombinant myristoylated ARF1. Second, adding constitutively active Q71L ARF1 to the cytosol has the same effect as adding GTPγS. The endosomal membranes that recruit AP-2 adaptors have little ARF1 or any of the other ARFs associated with them, suggesting that ARF may be acting catalytically. The ARFs have been shown to activate phospholipase D (PLD), and we find that addition of exogenous PLD has the same effect as GTPγS or Q71L ARF1. Neomycin, which inhibits endogenous PLD by binding to its cofactor phosphatidylinositol 4,5-bisphosphate, prevents the recruitment of AP-2 not only onto endosomes but also onto the plasma membrane, suggesting that both events are mediated by PLD. Surprisingly, however, neither PLD nor neomycin has any effect on the recruitment of AP-1 adaptors onto the TGN, even though AP-1 recruitment is ARF mediated. These results indicate that different mechanisms are used for the recruitment of AP-1 and AP-2.


1996 ◽  
Vol 317 (3) ◽  
pp. 933-938 ◽  
Author(s):  
Meylin SUJU ◽  
Marbelly DAVILA ◽  
German POLEO ◽  
Roberto DOCAMPO ◽  
Gustavo BENAIM

Phosphatidylethanol is formed by ‘transphosphatidylation’ of phospholipids with ethanol catalysed by phospholipase D and can be accumulated in the plasma membrane of mammalian cells after treatment of animals with ethanol. In the present work we show that phosphatidylalcohols, such as phosphatidylethanol and phosphatidylbutanol, produced a twofold stimulation of the Ca2+-ATPase activity of human erythrocytes. This stimulation occurs with the purified, solubilized enzyme as well as with ghost preparations, where the enzyme is in its natural lipidic environment and is different to that obtained with other acidic phospholipids such as phosphatidylserine. Addition of either phosphatidylserine, phosphatidylethanol or phosphatidylbutanol to the purified Ca2+-ATPase, or to ghosts preparations, increased the affinity of the enzyme for Ca2+ and the maximal velocity of the reaction as compared with controls in the absence of acidic phospholipids. However, in contrast with what occurs with phosphatidylserine, simultaneous addition of phosphatidylalcohols and calmodulin increased the affinity of the enzyme for Ca2+ to a greater extent than each added separately. When ethanol was added to either the purified erythrocyte Ca2+-ATPase or to erythrocyte-ghost preparations in the presence of acidic phospholipids, an additive effect was observed. There was an increase in the affinity for Ca2+ and in the maximal velocity of the reaction, well above the values obtained with ethanol or with the acidic phospholipids tested separately. These findings could have pharmacological importance. It is conceivable that the decrease in the intracellular Ca2+ concentration that has been reported in erythrocytes as a result of ethanol intoxication could be due to the stimulation of the Ca2+-ATPase by the accumulated phosphatidylethanol, to a direct effect of ethanol on the enzyme or to an additive combination of both.


Sign in / Sign up

Export Citation Format

Share Document